Circuit minimization problem

We study the complexity of the following circuit minimization problem: given the truth table of a Boolean function f and a parameter s, decide whether f can be realized by a Boolean circuit of size at most s. We argue why this problem is unlikely to be in P (or even in P/poly) by giving a number of surprising consequences of such an assumption. We also argue that proving this problem to be NP-complete (if it is indeed true) would imply proving strong circuit lower bounds for the class DTIME(2°('~)), which appears beyond the currently known techniques.

[1]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[2]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[3]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[4]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[5]  Ravi Kannan,et al.  Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets , 1982, Inf. Control..

[6]  Janos Simon,et al.  BPP and the polynomial time hierarchy in communication complexity , 1986 .

[7]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  José D. P. Rolim,et al.  Weak random sources, hitting sets, and BPP simulations , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[9]  Avi Wigderson,et al.  Improved Derandomization of BPP Using a Hitting Set Generator , 1999, RANDOM-APPROX.

[10]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Avi Wigderson,et al.  Near-optimal conversion of hardness into pseudo-randomness , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[12]  Peter Bro Miltersen,et al.  Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999 .

[13]  José D. P. Rolim,et al.  A new general derandomization method , 1998, JACM.

[14]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[15]  Osamu Watanabe,et al.  New Collapse Consequences of NP Having Small Circuits , 1995, ICALP.

[16]  Oded Goldreich,et al.  Another proof that bpp?ph (and more) , 1997 .

[17]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[18]  Stathis Zachos,et al.  A Decisive Characterization of BPP , 1986, Inf. Control..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Lance Fortnow,et al.  One-sided two-sided error in probabilistic computation , 1999 .

[21]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[22]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[23]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[24]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[25]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.