Semantic Image Segmentation and Web-Supervised Visual Learning

Given an image, the goal of this work is to recognise objects of certain categories despite intra-class appearance variations and small inter-class differences. The appearance of objects in photographs is influenced by lighting, scale, different poses, viewpoints, articulation of objects, clutter and occlusion. Two different aspects of object recognition are investigated in this thesis. The first part develops models for semantic object segmentation of natural images and relies on groundtruth labelling for training. The second part uses the implicit supervision that is available on web-pages to learn visual object-class models automatically. It can then provide training data for object detection or segmentation algorithms. The goal in the first part is to label connected regions in an image as belonging to specific object classes, such as grass or cow. We introduce a compact model, where each class is modelled by a single histogram of visual-words, this is in contrast to common nearest-neighbour approaches which model each class by storing exemplar histograms. After introducing segmentation algorithms based on these histogram models we extend the Random Forest classifier and evaluate its feature selection properties for the semantic object segmentation task. Most object recognition methods rely on labelled training images. For each object category to be recognised, the system is trained on a set of images containing instances of these categories. The second part of this thesis focuses on the automatic creation of sets of images that contain a certain object class. The idea is to download an initial set of images from the Internet based on a search query (e.g. penguin). Given the images a text based ranking that exploits the information on the web-pages is performed. This ranking is then used to automatically learn visual models for object categories. We compare the performance of our system to previous work and show that it performs equally well without the need of explicit manual supervision. This thesis is submitted to the Department of Engineering Science, University of Oxford, in fulfilment of the requirements for the degree of Doctor of Philosophy. This thesis is entirely my own work, and except where otherwise stated, describes my own research. Florian Schroff, St. Anne’s College Copyright c ©2009 Florian Schroff All Rights Reserved

[1]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[2]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[3]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[4]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[8]  Colin Potts,et al.  Design of Everyday Things , 1988 .

[9]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[10]  Kanti V. Mardia,et al.  Spatial Classification Using Fuzzy Membership Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[12]  Fangju Wang,et al.  Fuzzy supervised classification of remote sensing images , 1990 .

[13]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[15]  Michael J. Swain,et al.  WebSeer: An Image Search Engine for the World Wide Web , 1996 .

[16]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[17]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[18]  Tin Kam Ho,et al.  Building projectable classifiers of arbitrary complexity , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[19]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[20]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[22]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[23]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[24]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[25]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[26]  Dariu Gavrila,et al.  Multi-feature hierarchical template matching using distance transforms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[27]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[29]  Jitendra Malik,et al.  Recognizing surfaces using three-dimensional textons , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Katharina Morik,et al.  Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring , 1999, ICML.

[31]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[32]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[34]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[35]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[36]  Carla E. Brodley,et al.  Identifying Mislabeled Training Data , 1999, J. Artif. Intell. Res..

[37]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[38]  Pietro Perona,et al.  Towards automatic discovery of object categories , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[39]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[40]  Daniel P. Huttenlocher,et al.  Efficient matching of pictorial structures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[41]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[42]  Eugene M. Kleinberg,et al.  On the Algorithmic Implementation of Stochastic Discrimination , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[44]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[45]  Kristin J. Dana,et al.  Compact representation of bidirectional texture functions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[46]  Ronen Basri,et al.  Segmentation and boundary detection using multiscale intensity measurements , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[47]  Javed A. Aslam,et al.  Models for metasearch , 2001, SIGIR '01.

[48]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[49]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[50]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[51]  Bernhard Schölkopf,et al.  Estimating a Kernel Fisher Discriminant in the Presence of Label Noise , 2001, ICML.

[52]  J. D. Gorman,et al.  Alpha-Divergence for Classification, Indexing and Retrieval (Revised 2) , 2002 .

[53]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[54]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[55]  Andrew Zisserman,et al.  Classifying Images of Materials: Achieving Viewpoint and Illumination Independence , 2002, ECCV.

[56]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Andrew Zisserman,et al.  Classifying materials from images: to cluster or not to cluster? , 2002, European Conference on Computer Vision.

[58]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[59]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[60]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[61]  Jiebo Luo,et al.  Probabilistic spatial context models for scene content understanding , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[62]  Rong Jin,et al.  Web image retrieval re-ranking with relevance model , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[63]  B. Schiele,et al.  Interleaved Object Categorization and Segmentation , 2003, BMVC.

[64]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[65]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[66]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[67]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[68]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[69]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[70]  Charles Elkan,et al.  Using the Triangle Inequality to Accelerate k-Means , 2003, ICML.

[71]  Cordelia Schmid,et al.  A sparse texture representation using affine-invariant regions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[72]  Ilan Shimshoni,et al.  Mean shift based clustering in high dimensions: a texture classification example , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[73]  Christopher K. I. Williams,et al.  Image Modeling with Position-Encoding Dynamic Trees , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[75]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[76]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[77]  Shimon Ullman,et al.  Combining Top-Down and Bottom-Up Segmentation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[78]  Andrew Zisserman,et al.  Extending Pictorial Structures for Object Recognition , 2004, BMVC.

[79]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[81]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[82]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[83]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[84]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[85]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[86]  Tamara L. Berg,et al.  Names and faces in the news , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[87]  Tomaso Poggio,et al.  A New Biologically Motivated Framework for Robust Object Recognition , 2004 .

[88]  Pietro Perona,et al.  A Visual Category Filter for Google Images , 2004, ECCV.

[89]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[90]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[91]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[92]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[93]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[94]  Shimon Ullman,et al.  Learning to Segment , 2004, ECCV.

[95]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[96]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[97]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[98]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[99]  Pietro Perona,et al.  A sparse object category model for efficient learning and exhaustive recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[100]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[101]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[102]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[103]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  Andrew Zisserman,et al.  OBJ CUT , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[105]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[106]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[107]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[108]  Martial Hebert,et al.  A hierarchical field framework for unified context-based classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[109]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[110]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[111]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[112]  E. M. Kleinberg,et al.  Stochastic discrimination , 1990, Annals of Mathematics and Artificial Intelligence.

[113]  Luc Van Gool,et al.  Modeling scenes with local descriptors and latent aspects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[114]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[115]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[116]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[117]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[118]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[119]  Stuart Geman,et al.  Context and Hierarchy in a Probabilistic Image Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[120]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.

[121]  Silvio Savarese,et al.  Discriminative Object Class Models of Appearance and Shape by Correlatons , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[122]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[123]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[124]  Edward I. George,et al.  Bayesian Ensemble Learning , 2006, NIPS.

[125]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[126]  Antonio Criminisi,et al.  Single-Histogram Class Models for Image Segmentation , 2006, ICVGIP.

[127]  J. Copas,et al.  Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma , 2006 .

[128]  Antonio Criminisi,et al.  Object Class Recognition at a Glance , 2006 .

[129]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[130]  Andrew Zisserman,et al.  Video Google: Efficient Visual Search of Videos , 2006, Toward Category-Level Object Recognition.

[131]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[132]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[133]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[134]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  David A. Forsyth,et al.  Animals on the Web , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[136]  Jamie Shotton,et al.  The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[137]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[138]  David G. Lowe,et al.  Shape Descriptors for Maximally Stable Extremal Regions , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[139]  Yuanhao Chen Rapid Inference on a novel AND / OR graph : Detection , Segmentation and Parsing of Articulated Deformable Objects in Cluttered Backgrounds , 2007 .

[140]  Irfan A. Essa,et al.  Tree-based Classifiers for Bilayer Video Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[141]  Max Welling Donald,et al.  Products of Experts , 2007 .

[142]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[143]  Manik Varma,et al.  Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[144]  Ankur Agarwal,et al.  Incorporating On-demand Stereo for Real Time Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[145]  Bill Triggs,et al.  Scene Segmentation with CRFs Learned from Partially Labeled Images , 2007, NIPS.

[146]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[147]  Vincent Lepetit,et al.  Fast Keypoint Recognition in Ten Lines of Code , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[148]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[149]  Andrea Vedaldi,et al.  Objects in Context , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[150]  Antonio Criminisi,et al.  Harvesting Image Databases from the Web , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[151]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[152]  Fei-Fei Li,et al.  OPTIMOL: Automatic Online Picture Collection via Incremental Model Learning , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[153]  A. Torralba,et al.  The role of context in object recognition , 2007, Trends in Cognitive Sciences.

[154]  Martial Hebert,et al.  Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[155]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[156]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[157]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[158]  Luc Devroye,et al.  Consistency of Random Forests and Other Averaging Classifiers , 2008, J. Mach. Learn. Res..

[159]  Gang Wang,et al.  Object image retrieval by exploiting online knowledge resources , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[160]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[161]  Chris Pal,et al.  Mining the web for visual concepts , 2008, MDM '08.

[162]  Toby Sharp,et al.  Implementing Decision Trees and Forests on a GPU , 2008, ECCV.

[163]  Eli Shechtman,et al.  In defense of Nearest-Neighbor based image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[164]  Fei-Fei Li,et al.  Towards Scalable Dataset Construction: An Active Learning Approach , 2008, ECCV.

[165]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[166]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[167]  Alexei A. Efros,et al.  Recognition by association via learning per-exemplar distances , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[168]  Antonio Criminisi,et al.  Object Class Segmentation using Random Forests , 2008, BMVC.

[169]  Andrew Blake,et al.  Image Segmentation by Branch-and-Mincut , 2008, ECCV.

[170]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[171]  Bernt Schiele,et al.  Decomposition, discovery and detection of visual categories using topic models , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[172]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[173]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[174]  Kristen Grauman,et al.  Keywords to visual categories: Multiple-instance learning forweakly supervised object categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[175]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[176]  Gabriela Csurka,et al.  A Simple High Performance Approach to Semantic Segmentation , 2008, BMVC.

[177]  Trevor Darrell,et al.  Unsupervised Learning of Visual Sense Models for Polysemous Words , 2008, NIPS.

[178]  Li Fei-Fei,et al.  Towards total scene understanding: Classification, annotation and segmentation in an automatic framework , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[179]  Serge Beucher,et al.  THE WATERSHED TRANSFORMATION APPLIED TO IMAGE SEGMENTATION , 2009 .

[180]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.