Bipartite separability of symmetric N-qubit noisy states using conditional quantum relative Tsallis entropy

[1]  Masahito Hayashi,et al.  Relating different quantum generalizations of the conditional Rényi entropy , 2013, 1311.3887.

[2]  Sudha,et al.  Effectiveness of depolarizing noise in causing sudden death of entanglement , 2013, Quantum Inf. Process..

[3]  Sudha,et al.  From the quantum relative Tsallis entropy to its conditional form: Separability criterion beyond local and global spectra , 2013, 1309.6944.

[4]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[5]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[6]  Sudha,et al.  Majorana representation of symmetric multiqubit states , 2011, Quantum Information Processing.

[7]  R. Rossignoli,et al.  Generalized entropic measures of quantum correlations , 2010, 1104.5678.

[8]  A. Rajagopal,et al.  Entropic characterization of separability in Gaussian states , 2009, 0909.1087.

[9]  Andrzej Kossakowski,et al.  Spectral conditions for entanglement witnesses versus bound entanglement , 2009 .

[10]  G. Jaeger,et al.  Entanglement sudden death in qubit-qutrit systems , 2007, 0707.4485.

[11]  R. Prabhu,et al.  Separability of a family of one-parameter W and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal q-conditional-entropy approach , 2007, 0706.3038.

[12]  A. Plastino,et al.  Some features of the conditional ${\mathsf q}$-entropies of composite quantum systems , 2003, quant-ph/0306188.

[13]  R. Rossignoli,et al.  Violation of majorization relations in entangled states and its detection by means of generalized entropic forms , 2003, 1505.03611.

[14]  R. Rossignoli,et al.  Generalized entropic criterion for separability , 2002, 1505.03608.

[15]  A. Plastino,et al.  Conditional q-entropies and quantum separability: a numerical exploration , 2002, quant-ph/0207129.

[16]  S. Abe Nonadditive measure and quantum entanglement in a class of mixed states of N^n-system , 2001, quant-ph/0104135.

[17]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[18]  Funabashi,et al.  Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.

[19]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[20]  Funabashi,et al.  Quantum entanglement inferred by the principle of maximum nonadditive entropy , 1999, quant-ph/9904088.

[21]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[22]  M. Horodecki,et al.  Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[24]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[25]  P. Horodecki,et al.  Quantum redundancies and local realism , 1994 .