Universally Sparse Hypergraphs with Applications to Coding Theory

For fixed integers r ≥ 2, e ≥ 2, v ≥ r + 1, an r-uniform hypergraph is called ${{\mathcal{G}}_r}\left({v,e}\right)$-free if the union of any e distinct edges contains at least v+1 vertices. Let fr(n,v,e) denote the maximum number of edges in a ${{\mathcal{G}}_r}\left({v,e}\right)$-free r-uniform hypergraph on n vertices. Brown, Erdős and Sós showed in 1973 that there exist constants c1,c2 depending only on r,e,v such that${c_1}{n^{\frac{{er - v}}{{e - 1}}}} \leq {f_r}\left({n,v,e}\right) \leq {c_2}{n^{\left\lceil {\frac{{er - v}}{{e - 1}}} \right\rceil 1}}.$ For e − 1|er − v, the lower bound matches the upper bound up to a constant factor; whereas for e – 1ł er − v, it is a notoriously hard problem to determine the correct exponent of n. Our main result is an improvement ${f_r}\left({n,v,e}\right) = \Omega \left({{n^{\frac{{er - v}}{{e - 1}}}}{{(\log n)}^{\frac{1}{{e - 1}}}}}\right)$ for any r,e,v satisfying gcd(e − 1,er − v) = 1. Moreover, the hypergraph we constructed is not only ${{\mathcal{G}}_r}\left({v,e}\right)$-free but also universally ${{\mathcal{G}}_r}\left({ir - \left\lceil {\frac{{(i - 1)(er - v)}}{{e - 1}}} \right\rceil ,i}\right)$ -free for every 2 ≤ i ≤ e. Interestingly, our new lower bound provides improved constructions for several seemingly unrelated topics in Coding Theory, namely, Parent-Identifying Set Systems, uniform Combinatorial Batch Codes and optimal Locally Recoverable Codes.For a full version [1], see: https://arxiv.org/abs/1902.05903

[1]  G. R. Blakley,et al.  Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[2]  P. Hall On Representatives of Subsets , 1935 .

[3]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. S. Barnett,et al.  Private communication , 1969 .

[5]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[6]  P. Erdijs ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .

[7]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[8]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[9]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[10]  János Komlós,et al.  Extremal Uncrowded Hypergraphs , 1982, J. Comb. Theory, Ser. A.

[11]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[12]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Jirí Sgall,et al.  An Upper Bound for a Communication Game Related to Time-Space Tradeoffs , 1995, The Mathematics of Paul Erdős I.

[15]  Vojtech Rödl,et al.  On Uncrowded Hypergraphs , 1995, Random Struct. Algorithms.

[16]  Douglas R. Stinson,et al.  Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes , 1998, SIAM J. Discret. Math..

[17]  Amos Fiat,et al.  Tracing traitors , 2000, IEEE Trans. Inf. Theory.

[18]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[19]  Avi Wigderson,et al.  Simple analysis of graph tests for linearity and PCP , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[20]  Stasys Jukna,et al.  Extremal Combinatorics , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[21]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[22]  Felix Lazebnik,et al.  On Hypergraphs of Girth Five , 2003, Electron. J. Comb..

[23]  Gábor N. Sárközy,et al.  An Extension Of The Ruzsa-Szemerédi Theorem , 2004, Comb..

[24]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[25]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[26]  Gábor N. Sárközy,et al.  On a Turán-type hypergraph problem of Brown, Erdos and T. Sós , 2005, Discret. Math..

[27]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[28]  Noga Alon,et al.  On An Extremal Hypergraph Problem Of Brown, Erdős And Sós , 2006, Comb..

[29]  V. Rödl,et al.  Extremal Hypergraph Problems and the Regularity Method , 2006 .

[30]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[31]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[32]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[33]  Michael J. Collins Upper bounds for parent-identifying set systems , 2009, Des. Codes Cryptogr..

[34]  Noga Alon,et al.  On the power of two, three and four probes , 2009, SODA.

[35]  Yuan Zhou Introduction to Coding Theory , 2010 .

[36]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[37]  Z. Furedi,et al.  Uniform hypergraphs containing no grids , 2011, 1103.1691.

[38]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[39]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[40]  Dimitris S. Papailiopoulos,et al.  XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..

[41]  Niranjan Balachandran,et al.  On an extremal hypergraph problem related to combinatorial batch codes , 2012, Discret. Appl. Math..

[42]  Peter Keevash The existence of designs , 2014, 1401.3665.

[43]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[44]  Csilla Bujtás,et al.  Turán numbers and batch codes , 2013, Discret. Appl. Math..

[45]  Jacques Verstraëte,et al.  A counterexample to sparse removal , 2013, Eur. J. Comb..

[46]  Gennian Ge,et al.  Separating Hash Families: A Johnson-type bound and New Constructions , 2016, SIAM J. Discret. Math..

[47]  Tom Bohman,et al.  A note on the random greedy independent set algorithm , 2013, Random Struct. Algorithms.

[48]  Jacques Verstraëte Extremal problems for cycles in graphs , 2016 .

[49]  W. Samotij,et al.  Supersaturated sparse graphs and hypergraphs , 2017, 1710.04517.

[50]  D. Mubayi A short proof of a lower bound for Tur\'an numbers , 2017, 1710.10973.

[51]  Stefan Glock Triple systems with no three triples spanning at most five points , 2018, Bulletin of the London Mathematical Society.

[52]  Ying Miao,et al.  Bounds on Traceability Schemes , 2016, IEEE Transactions on Information Theory.

[53]  Gennian Ge,et al.  Centralized Coded Caching Schemes: A Hypergraph Theoretical Approach , 2016, IEEE Transactions on Information Theory.

[54]  Chen Yuan,et al.  Construction of optimal locally recoverable codes and connection with hypergraph , 2018, ICALP.

[55]  Sparse Hypergraphs with Applications to Coding Theory , 2019, SIAM J. Discret. Math..

[56]  Gennian Ge,et al.  Sparse hypergraphs: New bounds and constructions , 2017, J. Comb. Theory, Ser. B.

[57]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .