The application of data mining tools and statistical techniques to identify patterns and changes in fire events

ISBN Number 978-1-877349-98-0 (on-line) ISBN Number 978-1-877349-97-3 (paperback) © Copyright New Zealand Fire Service Commission This study explores the extent to which data mining and statistical techniques might assist the Fire Service in detecting threshold and pattern changes in its spatio-temporal fire data. Three entirely different scenarios are investigated. A post-hoc search for patterns was made of fires of suspicious or unknown cause in an area where a subsequently convicted arsonist was known to be operating. The spatio-temporal occurrence of chimney fires was compared with local climate data looking for any threshold conditions which might trigger the seasonal changes in occurrence. Finally an attempt is made to measure the effectiveness of the Firewise programme, which involves fire fighters visiting schools to instruct students in fire safety. The before and after incidence of residential fires in proximity to schools visited is assessed to determine whether the programme has had any measurable effect. Different data mining techniques are applied to each scenario.

[1]  Kenji Yamanishi,et al.  A unifying framework for detecting outliers and change points from time series , 2006, IEEE Transactions on Knowledge and Data Engineering.

[2]  B. L. Rozovskii,et al.  The “Disorder” Problem for a Poisson Process , 1971 .

[3]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  K. Worsley Confidence regions and tests for a change-point in a sequence of exponential family random variables , 1986 .

[6]  Roger D. Peng,et al.  A Space–Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index , 2005 .

[7]  David Siegmund,et al.  Confidence Sets in Change-point Problems , 1988 .

[8]  A. Raftery,et al.  Bayesian analysis of a Poisson process with a change-point , 1986 .

[9]  S. Wood,et al.  Generalized Additive Models: An Introduction with R , 2006 .

[10]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[11]  E. Carlstein Nonparametric Change-Point Estimation , 1988 .

[12]  Murray Aitkin,et al.  A general maximum likelihood analysis of overdispersion in generalized linear models , 1996, Stat. Comput..

[13]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[14]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[15]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[16]  N. Akakpo Detecting change-points in a discrete distribution via model selection , 2008, 0801.0970.

[17]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[18]  T. Lai Sequential changepoint detection in quality control and dynamical systems , 1995 .

[19]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[20]  Adrian E. Raftery,et al.  Asymptotic inference for a change-point Poisson process , 1986 .

[21]  M. Beibel,et al.  Sequential change-point detection in continuous time when the post-change drift is unknown , 1997 .

[22]  John F. Roddick,et al.  Temporal, Spatial, and Spatio-Temporal Data Mining , 2001, Lecture Notes in Computer Science.

[23]  S. Panchapakesan,et al.  Inference about the Change-Point in a Sequence of Random Variables: A Selection Approach , 1988 .

[24]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .

[25]  J. Bai,et al.  Estimation of a Change Point in Multiple Regression Models , 1997, Review of Economics and Statistics.

[26]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[27]  David R. Brillinger,et al.  Probability based models for estimation of wildfire risk , 2004 .

[28]  L. Allison Jones,et al.  The Statistical Design of EWMA Control Charts with Estimated Parameters , 2002 .

[29]  Douglas M. Hawkins,et al.  The Changepoint Model for Statistical Process Control , 2003 .

[30]  Grace S. Chiu,et al.  Bent-Cable Regression Theory and Applications , 2006 .

[31]  David R. Brillinger,et al.  Three Environmental Probabilistic Risk Problems , 2003 .

[32]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[33]  Charles W. Champ,et al.  Assessment of Multivariate Process Control Techniques , 1997 .

[34]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[35]  Ron S. Kenett,et al.  Data-analytic aspects of the Shiryayev-Roberts control chart: Surveillance of a non-homogeneous Poisson process , 1996 .

[36]  Tsuyoshi Idé,et al.  Change-Point Detection using Krylov Subspace Learning , 2007, SDM.

[37]  Eric R. Ziegel,et al.  Generalized Linear Models:Generalized Linear Models , 2002 .

[38]  Martin Beibel,et al.  Sequential Bayes Detection of Trend Changes , 2003 .

[39]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[40]  Giovanni Felici,et al.  Mathematical Methods for Knowledge Discovery and Data Mining , 2007 .

[41]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[42]  Albert N. Shiryaev,et al.  Solving the Poisson Disorder Problem , 2002 .

[43]  Marianne Frisén,et al.  Statistical Surveillance. Optimality and Methods , 2003 .

[44]  Elvira N. Loredo,et al.  A Program for ARL Calculation for Multivariate EWMA Charts , 2001 .

[45]  D. Hawkins Fitting multiple change-point models to data , 2001 .

[46]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[47]  Mark H. A. Davis A note on the Poisson disorder problem , 1976 .

[48]  William J. Reed,et al.  Reconstructing the history of forest fire frequency: Identifying hazard rate change points using the bayes information criterion , 2000 .

[49]  Fah Fatt Gan Design of optimal exponential CUSUM control charts , 1994 .

[50]  Marion R. Reynolds,et al.  Control Charts and the Efficient Allocation of Sampling Resources , 2004, Technometrics.

[51]  William J. Reed,et al.  Determining Changes in Historical Forest Fire Frequency from a Time-Since-Fire Map , 1998 .

[52]  J. Bai,et al.  Least squares estimation of a shift in linear processes , 1994 .

[53]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[54]  W. Shewhart The Economic Control of Quality of Manufactured Product. , 1932 .

[55]  Igor Rychlik,et al.  A note on estimation of intensities of fire ignitions with incomplete data , 2006 .

[56]  Alan M. Polansky,et al.  Detecting change-points in Markov chains , 2007, Comput. Stat. Data Anal..

[57]  Pedro Galeano,et al.  The use of cumulative sums for detection of changepoints in the rate parameter of a Poisson Process , 2007, Comput. Stat. Data Anal..

[58]  A Tsodikov,et al.  Semiparametric models: a generalized self‐consistency approach , 2003, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[59]  Erhan Bayraktar,et al.  Poisson Disorder Problem with Exponential Penalty for Delay , 2006, Math. Oper. Res..