NTARC: A Data Model for the Systematic Review of Network Traffic Analysis Research

[1]  Maurizio Dusi,et al.  Traffic classification through simple statistical fingerprinting , 2007, CCRV.

[2]  Tanja Zseby,et al.  Analysis of Lightweight Feature Vectors for Attack Detection in Network Traffic , 2018, Applied Sciences.

[3]  Yu-Lin He,et al.  Fuzziness based semi-supervised learning approach for intrusion detection system , 2017, Inf. Sci..

[4]  Yonghong Chen,et al.  DDoS Detection Method Based on Chaos Analysis of Network Traffic Entropy , 2014, IEEE Communications Letters.

[5]  Hollie White,et al.  A Metadata Best Practice for a Scientific Data Repository , 2009 .

[6]  David Moore,et al.  The internet measurement data catalog , 2005, CCRV.

[7]  Donatella Castelli,et al.  Are Scientific Data Repositories Coping with Research Data Publishing? , 2016, Data Sci. J..

[8]  George Bebis,et al.  A survey of network flow applications , 2013, J. Netw. Comput. Appl..

[9]  Antonio Pescapè,et al.  Issues and future directions in traffic classification , 2012, IEEE Network.

[10]  Andrew W. Moore,et al.  Bayesian Neural Networks for Internet Traffic Classification , 2007, IEEE Transactions on Neural Networks.

[11]  Namita Mittal,et al.  Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Techniques , 2012 .

[12]  Jun Zhang,et al.  An Effective Network Traffic Classification Method with Unknown Flow Detection , 2013, IEEE Transactions on Network and Service Management.

[13]  Alfredo De Santis,et al.  Network anomaly detection with the restricted Boltzmann machine , 2013, Neurocomputing.

[14]  Jun Zhang,et al.  Unsupervised traffic classification using flow statistical properties and IP packet payload , 2013, J. Comput. Syst. Sci..

[15]  Nasser Yazdani,et al.  Mutual information-based feature selection for intrusion detection systems , 2011, J. Netw. Comput. Appl..

[16]  Carlos García Garino,et al.  An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection , 2012, Expert Syst. Appl..

[17]  Harish Kumar,et al.  An intrusion detection system using network traffic profiling and online sequential extreme learning machine , 2015, Expert Syst. Appl..

[18]  Paolo Manghi,et al.  Data journals: A survey , 2014, J. Assoc. Inf. Sci. Technol..

[19]  A B Haidich,et al.  Meta-analysis in medical research. , 2010, Hippokratia.

[20]  Yan Ma,et al.  Real-time feature selection in traffic classification , 2008 .

[21]  Jun Zhang,et al.  Network Traffic Classification Using Correlation Information , 2013, IEEE Transactions on Parallel and Distributed Systems.

[22]  Tanja Zseby,et al.  Time-activity footprints in IP traffic , 2016, Comput. Networks.

[23]  Michael Witt,et al.  Data sharing, small science and institutional repositories , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Paolo Manghi,et al.  Enhanced Publications: Data Models and Information Systems , 2014 .

[25]  Jie Wu,et al.  Robust Network Traffic Classification , 2015, IEEE/ACM Transactions on Networking.

[26]  Charles V. Wright,et al.  On Inferring Application Protocol Behaviors in Encrypted Network Traffic , 2006, J. Mach. Learn. Res..

[27]  Judith Kelner,et al.  A Survey on Internet Traffic Identification , 2009, IEEE Communications Surveys & Tutorials.

[28]  Hiroshi Esaki,et al.  Unsupervised host behavior classification from connection patterns , 2010, Int. J. Netw. Manag..

[29]  Zhi-Li Zhang,et al.  A Modular Machine Learning System for Flow-Level Traffic Classification in Large Networks , 2012, TKDD.

[30]  Mauro Conti,et al.  Robust Smartphone App Identification via Encrypted Network Traffic Analysis , 2017, IEEE Transactions on Information Forensics and Security.

[31]  Xenofontas A. Dimitropoulos,et al.  Histogram-based traffic anomaly detection , 2009, IEEE Transactions on Network and Service Management.

[32]  Carey L. Williamson,et al.  Offline/realtime traffic classification using semi-supervised learning , 2007, Perform. Evaluation.

[33]  Seyed Mojtaba Hosseini Bamakan,et al.  Ramp loss K-Support Vector Classification-Regression; a robust and sparse multi-class approach to the intrusion detection problem , 2017, Knowl. Based Syst..

[34]  Qi Li,et al.  Network traffic classification via HMM under the guidance of syntactic structure , 2012, Comput. Networks.

[35]  Luca Salgarelli,et al.  Support Vector Machines for TCP traffic classification , 2009, Comput. Networks.

[36]  Sebastian Zander,et al.  Timely and Continuous Machine-Learning-Based Classification for Interactive IP Traffic , 2012, IEEE/ACM Transactions on Networking.

[37]  Mohamed Faten Zhani,et al.  Analysis and Prediction of Real Network Traffic , 2009, J. Networks.

[38]  Sebastian Zander,et al.  A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification , 2006, CCRV.

[39]  Tanja Zseby,et al.  Pattern Discovery in Internet Background Radiation , 2019, IEEE Transactions on Big Data.

[40]  Jugal K. Kalita,et al.  A multi-step outlier-based anomaly detection approach to network-wide traffic , 2016, Inf. Sci..

[41]  Marina Thottan,et al.  Anomaly detection in IP networks , 2003, IEEE Trans. Signal Process..

[42]  John P. A. Ioannidis,et al.  A manifesto for reproducible science , 2017, Nature Human Behaviour.

[43]  Daniel G. Wright,et al.  Implementation of a workflow for publishing citeable environmental data: successes, challenges and opportunities from a data centre perspective , 2016, International Journal on Digital Libraries.

[44]  El-Sayed M. El-Alfy,et al.  A multiclass cascade of artificial neural network for network intrusion detection , 2017, J. Intell. Fuzzy Syst..

[45]  Egon L. Willighagen,et al.  Linked open drug data for pharmaceutical research and development , 2011, J. Cheminformatics.

[46]  Kimberly C. Claffy,et al.  Dialing Privacy and Utility: A Proposed Data-Sharing Framework to Advance Internet Research , 2010, IEEE Security & Privacy.

[47]  Sharath Chandra Guntuku,et al.  Big Data Analytics framework for Peer-to-Peer Botnet detection using Random Forests , 2014, Inf. Sci..

[48]  Mohiuddin Ahmed,et al.  A survey of network anomaly detection techniques , 2016, J. Netw. Comput. Appl..

[49]  Tanja Zseby,et al.  Analysis of network traffic features for anomaly detection , 2014, Machine Learning.

[50]  Jugal K. Kalita,et al.  Network Anomaly Detection: Methods, Systems and Tools , 2014, IEEE Communications Surveys & Tutorials.

[51]  Gang Lu,et al.  Feature selection for optimizing traffic classification , 2012, Comput. Commun..

[52]  Ciprian Dobre,et al.  Internet traffic classification based on flows' statistical properties with machine learning , 2017, Int. J. Netw. Manag..