From nonlinear to Hamiltonian via feedback
暂无分享,去创建一个
[1] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[2] George J. Pappas,et al. Consistent abstractions of affine control systems , 2002, IEEE Trans. Autom. Control..
[3] Naomi Ehrich Leonard,et al. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..
[4] Romeo Ortega,et al. Euler-Lagrange systems , 1998 .
[5] Kevin M. Lynch,et al. Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..
[6] Paulo Tabuada,et al. Abstractions of Hamiltonian control systems , 2003, Autom..
[7] A. Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .
[8] R. Abraham,et al. Manifolds, tensor analysis, and applications: 2nd edition , 1988 .
[9] Romeo Ortega,et al. Passivity-based Control of Euler-Lagrange Systems , 1998 .
[10] Richard M. Murray,et al. Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..
[11] Arjan van der Schaft,et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..
[12] A. Isidori. Nonlinear Control Systems , 1985 .
[13] Naomi Ehrich Leonard,et al. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..
[14] Naomi Ehrich Leonard,et al. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..
[15] Naomi Ehrich Leonard,et al. Mechanical feedback control systems , 1999 .