From nonlinear to Hamiltonian via feedback

Mechanical control systems are a very important class of nonlinear control systems. They possess a rich mathematical structure which can be extremely important for the solution of various control problems. We expand the applicability of design methodologies developed for mechanical control systems by locally rendering nonlinear control systems, mechanical by a proper choice of feedback. In particular, we characterize control systems which can be transformed to Hamiltonian control systems by a local feedback transformation.

[1]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[2]  George J. Pappas,et al.  Consistent abstractions of affine control systems , 2002, IEEE Trans. Autom. Control..

[3]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[4]  Romeo Ortega,et al.  Euler-Lagrange systems , 1998 .

[5]  Kevin M. Lynch,et al.  Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..

[6]  Paulo Tabuada,et al.  Abstractions of Hamiltonian control systems , 2003, Autom..

[7]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[8]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[9]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[10]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[11]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[12]  A. Isidori Nonlinear Control Systems , 1985 .

[13]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[14]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..

[15]  Naomi Ehrich Leonard,et al.  Mechanical feedback control systems , 1999 .