Regions of Mid-level Human Visual Cortex Sensitive to the Global Coherence of Local Image Patches

The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

[1]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[2]  Damien J. Mannion,et al.  Color responsiveness argues against a dorsal component of human V4. , 2011, Journal of vision.

[3]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[4]  Daniel D. Dilks,et al.  The Occipital Place Area Is Causally and Selectively Involved in Scene Perception , 2013, The Journal of Neuroscience.

[5]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[6]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[7]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[8]  Shimon Ullman,et al.  Image interpretation by a single bottom-up top-down cycle , 2008, Proceedings of the National Academy of Sciences.

[9]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[10]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[11]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[12]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[13]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[14]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[15]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[16]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[17]  Richard C Saunders,et al.  Receptive field focus of visual area V4 neurons determines responses to illusory surfaces , 2013, Proceedings of the National Academy of Sciences.

[18]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[19]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[20]  Russell A. Epstein,et al.  Visual scene processing in familiar and unfamiliar environments. , 2007, Journal of neurophysiology.

[21]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[22]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[23]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[24]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[25]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[27]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[28]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[29]  Yuka Sasaki,et al.  Processing local signals into global patterns , 2007, Current Opinion in Neurobiology.

[30]  Roger B. H. Tootell,et al.  Spatial encoding and underlying circuitry in scene-selective cortex , 2013, NeuroImage.

[31]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[33]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[34]  Brenna Argall,et al.  SUMA: an interface for surface-based intra- and inter-subject analysis with AFNI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[35]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[36]  Ravi S. Menon,et al.  An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings , 2000, Current Biology.

[37]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[38]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[39]  Damien J. Mannion,et al.  Consequences of polar form coherence for fMRI responses in human visual cortex , 2013, NeuroImage.

[40]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[41]  Z. Kourtzi,et al.  Neural coding of global form in the human visual cortex. , 2008, Journal of neurophysiology.

[42]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[43]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[44]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[45]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[46]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[47]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[48]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[49]  Peter König,et al.  Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study , 2013, F1000Research.

[50]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[52]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[53]  Michael S. Beauchamp,et al.  A new method for improving functional-to-structural MRI alignment using local Pearson correlation , 2009, NeuroImage.