Modular Representation o f Luminance Polarity in the Superficial Layers of Primary Visual Cortex Highlights

[1]  Justin M. Ales,et al.  The effect of contrast polarity reversal on face detection: Evidence of perceptual asymmetry from sweep VEP , 2015, Vision Research.

[2]  Matthias Kaschube,et al.  The development of cortical circuits for motion discrimination , 2014, Nature Neuroscience.

[3]  J. Alonso,et al.  COLUMNAR ORGANIZATION OF SPATIAL PHASE IN VISUAL CORTEX , 2014, Nature Neuroscience.

[4]  J. Alonso,et al.  Neuronal and Perceptual Differences in the Temporal Processing of Darks and Lights , 2014, Neuron.

[5]  Qasim Zaidi,et al.  Neuronal nonlinearity explains greater visual spatial resolution for darks than lights , 2014, Proceedings of the National Academy of Sciences.

[6]  Ian Nauhaus,et al.  Building maps from maps in primary visual cortex , 2014, Current Opinion in Neurobiology.

[7]  Mario Fiorani,et al.  Automatic mapping of visual cortex receptive fields: A fast and precise algorithm , 2014, Journal of Neuroscience Methods.

[8]  Justin M. Ales,et al.  Flies and humans share a motion estimation strategy that exploits natural scene statistics , 2014, Nature Neuroscience.

[9]  Jérôme Ribot,et al.  Organization and Origin of Spatial Frequency Maps in Cat Visual Cortex , 2013, The Journal of Neuroscience.

[10]  Ian Nauhaus,et al.  Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2012, Nature Neuroscience.

[11]  Jason M Samonds,et al.  Relative luminance and binocular disparity preferences are correlated in macaque primary visual cortex, matching natural scene statistics , 2012, Proceedings of the National Academy of Sciences.

[12]  Yi Wang,et al.  Representation of surface luminance and contrast in primary visual cortex. , 2012, Cerebral cortex.

[13]  J. Alonso,et al.  Faster Thalamocortical Processing for Dark than Light Visual Targets , 2011, The Journal of Neuroscience.

[14]  Qasim Zaidi,et al.  Darks Are Processed Faster Than Lights , 2011, The Journal of Neuroscience.

[15]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[16]  R. Shapley,et al.  Generation of Black-Dominant Responses in V1 Cortex , 2010, The Journal of Neuroscience.

[17]  Nico Stuurman,et al.  Computer Control of Microscopes Using µManager , 2010, Current protocols in molecular biology.

[18]  R. Shapley,et al.  “Black” Responses Dominate Macaque Primary Visual Cortex V1 , 2009, The Journal of Neuroscience.

[19]  Chun-I Yeh,et al.  On and off domains of geniculate afferents in cat primary visual cortex , 2008, Nature Neuroscience.

[20]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[21]  Youping Xiao,et al.  V2 thin stripes contain spatially organized representations of achromatic luminance change. , 2007, Cerebral cortex.

[22]  Lawrence C. Sincich,et al.  Input to V2 Thin Stripes Arises from V1 Cytochrome Oxidase Patches , 2005, The Journal of Neuroscience.

[23]  Michael B. Lewis,et al.  Searching for faces in scrambled scenes , 2005 .

[24]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[25]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[27]  D. V. van Essen,et al.  Peaked encoding of relative luminance in macaque areas V1 and V2. , 2005, Journal of Neurophysiology.

[28]  Nicholas V. Swindale,et al.  Coverage and the design of striate cortex , 1991, Biological Cybernetics.

[29]  E. A. DeYoe,et al.  Rarity of luxotonic responses in cortical visual areas of the cat , 2004, Experimental Brain Research.

[30]  Michael B. Lewis,et al.  Face Detection: Mapping Human Performance , 2003, Perception.

[31]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[32]  W. Usrey,et al.  Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. , 2003, Journal of neurophysiology.

[33]  B. Chapman,et al.  No ON-OFF maps in supragranular layers of ferret visual cortex. , 2002, Journal of neurophysiology.

[34]  J. Alonso,et al.  Construction of Complex Receptive Fields in Cat Primary Visual Cortex , 2001, Neuron.

[35]  H. Komatsu,et al.  Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. , 2001, Journal of neurophysiology.

[36]  C. Hung,et al.  Building surfaces from borders in Areas 17 and 18 of the cat , 2001, Vision Research.

[37]  W H Bosking,et al.  Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex , 2001, Visual Neuroscience.

[38]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[39]  Amiram Grinvald,et al.  Visual cortex maps are optimized for uniform coverage , 2000, Nature Neuroscience.

[40]  M. Paradiso,et al.  Visual neuroscience: Illuminating the dark corners , 2000, Current Biology.

[41]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[42]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[43]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[44]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[45]  J. Boyd,et al.  Laminar and columnar patterns of geniculocortical projections in the cat: Relationship to cytochrome oxidase , 1996, The Journal of comparative neurology.

[46]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[47]  Julie M. Harris,et al.  Independent neural mechanisms for bright and dark information in binocular stereopsis , 1995, Nature.

[48]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Mather,et al.  Polarity specific adaptation to motion in the human visual system , 1991, Vision Research.

[51]  M. Law,et al.  Organization of primary visual cortex (area 17) in the ferret , 1988, The Journal of comparative neurology.

[52]  M P Stryker,et al.  Segregation of ON and OFF afferents to ferret visual cortex. , 1988, Journal of neurophysiology.

[53]  P. Whittle Increments and decrements: Luminance discrimination , 1986, Vision Research.

[54]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[55]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[56]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[57]  S. Levay,et al.  Segregation of on- and off-center afferents in mink visual cortex. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. L. Conway,et al.  Laminar organization of tree shrew dorsal lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[59]  M P Stryker,et al.  On and off sublaminae in the lateral geniculate nucleus of the ferret , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[62]  S. Mcconnell,et al.  ON and OFF layers in the lateral geniculate nucleus of the mink , 1982, Nature.

[63]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J R Bartlett,et al.  Luxotonic responses of units in macaque striate cortex. , 1979, Journal of neurophysiology.

[65]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[66]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[67]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[68]  A Kaneko,et al.  Neuronal architecture of on and off pathways to ganglion cells in carp retina. , 1977, Science.

[69]  J R Bartlett,et al.  Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli. , 1974, Journal of neurophysiology.

[70]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[71]  G. Baumgartner,et al.  [Inhibitory mechanisms and arrestive stabilization of individual neurons in the optic cortex; contribution on the coordination of cortical stimuli]. , 1955, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.