Long-term modification of cortical synapses improves sensory perception

[1]  Michael P. Kilgard,et al.  Cortical Map Plasticity Improves Learning but Is Not Necessary for Improved Performance , 2011, Neuron.

[2]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[3]  B. Wright,et al.  Enhancing Perceptual Learning by Combining Practice with Periods of Additional Sensory Stimulation , 2010, The Journal of Neuroscience.

[4]  Tobias Bonhoeffer,et al.  Searching for Engrams , 2010, Neuron.

[5]  Christoph E. Schreiner,et al.  Developmental sensory experience balances cortical excitation and inhibition , 2010, Nature.

[6]  Y. Dan,et al.  Synaptic Mechanisms of Direction Selectivity in Primary Auditory Cortex , 2010, The Journal of Neuroscience.

[7]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[8]  Michael J. Goard,et al.  Basal Forebrain Activation Enhances Cortical Coding of Natural Scenes , 2009, Nature Neuroscience.

[9]  K. Miller,et al.  Equalization of Ocular Dominance Columns Induced by an Activity-Dependent Learning Rule and the Maturation of Inhibition , 2009, The Journal of Neuroscience.

[10]  P. D. Grimwood,et al.  An Evaluation of the Hypothesis , 2009 .

[11]  Johannes C. Dahmen,et al.  Stimulus-Timing-Dependent Plasticity of Cortical Frequency Representation , 2008, The Journal of Neuroscience.

[12]  M. Bear,et al.  Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[14]  M. Nicolelis,et al.  Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence , 2008, Neuron.

[15]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[16]  C. Schreiner,et al.  A synaptic memory trace for cortical receptive field plasticity , 2007, Nature.

[17]  Mounya Elhilali,et al.  Monkey Frequency-Modulation Encoding in the Primary Auditory Cortex of the Awake Owl , 2001 .

[18]  Shaowen Bao,et al.  Early experience impairs perceptual discrimination , 2007, Nature Neuroscience.

[19]  Robert C. Liu,et al.  Auditory Cortical Detection and Discrimination Correlates with Communicative Significance , 2007, PLoS biology.

[20]  D. Feldman,et al.  Spike Timing-Dependent Synaptic Depression in the In Vivo Barrel Cortex of the Rat , 2007, The Journal of Neuroscience.

[21]  E. Chang,et al.  Critical Period Window for Spectral Tuning Defined in the Primary Auditory Cortex (A1) in the Rat , 2007, The Journal of Neuroscience.

[22]  Maja Loncar,et al.  Taming of the BEAST , 2007 .

[23]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[24]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[25]  L. Martinez,et al.  Circuits that build visual cortical receptive fields , 2006, Trends in Neurosciences.

[26]  Y. Dan,et al.  Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking , 2006, Neuron.

[27]  Mark F Bear,et al.  Reward timing in the primary visual cortex. , 2006, Science.

[28]  Michael Brecht,et al.  Map Plasticity in Somatosensory Cortex , 2005, Science.

[29]  J. Fritz,et al.  Active listening: Task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex , 2005, Hearing Research.

[30]  A. Alonso,et al.  Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep , 2005, The Journal of Neuroscience.

[31]  Marc A Heiser,et al.  Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Irvine,et al.  Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. , 2004, Cerebral cortex.

[33]  M. DeWeese,et al.  Shared and private variability in the auditory cortex. , 2004, Journal of neurophysiology.

[34]  Clifton C. Rumsey,et al.  Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. , 2004, Journal of neurophysiology.

[35]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[36]  S. Royer,et al.  Conservation of total synaptic weight through balanced synaptic depression and potentiation , 2003, Nature.

[37]  Niraj S. Desai,et al.  Critical periods for experience-dependent synaptic scaling in visual cortex , 2002, Nature Neuroscience.

[38]  N. Weinberger,et al.  Induction of behavioral associative memory by stimulation of the nucleus basalis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Gerstein,et al.  Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. , 2001, Journal of neurophysiology.

[40]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[41]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[42]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[43]  Z. Nadasdy,et al.  The Basal Forebrain Corticopetal System Revisited , 1999, Annals of the New York Academy of Sciences.

[44]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[45]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[46]  J. Bakin,et al.  Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Denise Brown,et al.  Taming the beast , 1995 .

[48]  R. Metherate,et al.  Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex , 1993, Synapse.

[49]  J. Edeline,et al.  Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. , 1993, Behavioral neuroscience.

[50]  W. Singer,et al.  Pharmacological induction of use-dependent receptive field modifications in the visual cortex. , 1988, Science.

[51]  Y. Frégnac,et al.  A cellular analogue of visual cortical plasticity , 1988, Nature.

[52]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[53]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.