Macro-continuous computed torque algorithm for a three-dimensional eel-like robot

This paper presents the dynamic modeling of a continuous three-dimensional swimming eel-like robot. The modeling approach is based on the "geometrically exact beam theory" and on that of Newton-Euler, as it is well known within the robotics community. The proposed algorithm allows us to compute the robot's Galilean movement and the control torques as a function of the expected internal deformation of the eel's body

[1]  G. Gillis,et al.  Environmental effects on undulatory locomotion in the American eel Anguilla rostrata: kinematics in water and on land , 1998 .

[2]  J. R. Morison,et al.  The Force Exerted by Surface Waves on Piles , 1950 .

[3]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[4]  James P. Ostrowski,et al.  A geometric approach to anguilliform locomotion: modelling of an underwater eel robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[5]  R. Comolet,et al.  Mécanique expérimentale des fluides , 1964 .

[6]  Joel W. Burdick,et al.  Experiments in carangiform robotic fish locomotion , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Joel W. Burdick,et al.  The Geometric Mechanics of Undulatory Robotic Locomotion , 1998, Int. J. Robotics Res..

[8]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[9]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[10]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[11]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[12]  Naomi Kato,et al.  Guidance and control of fish robot with apparatus of pectoral fin motion , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[14]  Shugen Ma,et al.  An Obstacle Avoidance Scheme for Planar Hyper-Redundant Manipulators , 1997 .

[15]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[16]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[17]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[18]  J. W. Humberston Classical mechanics , 1980, Nature.

[19]  Joel W. Burdick,et al.  Trajectory stabilization for a planar carangiform robot fish , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[21]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[22]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[23]  J. Videler,et al.  How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla). , 2001, The Journal of experimental biology.

[24]  Frédéric Boyer,et al.  Finite element of slender beams in finite transformations: a geometrically exact approach , 2004 .

[25]  J. J. Burgess,et al.  Bending Stiffness In A Simulation Of Undersea Cable Deployment , 1993 .

[26]  Howie Choset,et al.  A Follow-the-Leader Approach to Serpentine Robot Motion Planning , 1999 .

[27]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[28]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[29]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[30]  E. Reissner,et al.  On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .

[31]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[32]  Joel W. Burdick,et al.  The mechanics of undulatory locomotion: the mixed kinematic and dynamic case , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[33]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.