Untuned But Not Irrelevant: A Role For Untuned Neurons In Sensory Information Coding

In the sensory systems, most neurons9 firing rates are tuned to at least one aspect of the stimulus. Other neurons are untuned, meaning that their firing rates appear not to depend on the stimulus. Previous work on information coding in neural populations has ignored the untuned neurons, based on the tacit assumption that they are unimportant. Recently, me and other researchers have begun to question that assumption. Using theoretical calculations and analyses of iin vivo neural data, I show how untuned neurons contribute to neural information coding. Ignoring untuned neurons can lead to severe underestimates of the amount of stimulus information encoded, and in some cases population codes can be made more informative by replacing tuned neurons with untuned ones.

[1]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[2]  F. Mechler,et al.  Independent and Redundant Information in Nearby Cortical Neurons , 2001, Science.

[3]  Haim Sompolinsky,et al.  Implications of Neuronal Diversity on Population Coding , 2006, Neural Computation.

[4]  Mark Mazurek,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[5]  M. Carandini,et al.  Cortical State Determines Global Variability and Correlations in Visual Cortex , 2015, The Journal of Neuroscience.

[6]  Adam J. Sachs,et al.  Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles , 2017, Proceedings of the National Academy of Sciences.

[7]  Wilson S. Geisler,et al.  Optimal speed estimation in natural image movies predicts human performance , 2015, Nature Communications.

[8]  A. Pouget,et al.  Information-limiting correlations , 2014, Nature Neuroscience.

[9]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[10]  Eero P. Simoncelli,et al.  Partitioning neuronal variability , 2014, Nature Neuroscience.

[11]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[12]  D. Ferster,et al.  Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex , 1999, Neuron.

[13]  M. Carandini,et al.  The Nature of Shared Cortical Variability , 2015, Neuron.

[14]  Sliman J. Bensmaia,et al.  Biological and bionic hands: natural neural coding and artificial perception , 2015, Brain Stimulation.

[15]  Houman Safaai,et al.  Coordinated Population Activity Underlying Texture Discrimination in Rat Barrel Cortex , 2013, The Journal of Neuroscience.

[16]  David J. Field,et al.  What Is the Other 85 Percent of V1 Doing , 2006 .

[17]  Eric Shea-Brown,et al.  Stimulus-Dependent Correlations and Population Codes , 2008, Neural Computation.

[18]  Joel Zylberberg,et al.  Dynamics of robust pattern separability in the hippocampal dentate gyrus , 2016, Hippocampus.

[19]  Byron M. Yu,et al.  A high-performance brain–computer interface , 2006, Nature.

[20]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[21]  Byron M. Yu,et al.  Neural constraints on learning , 2014, Nature.

[22]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[23]  Maxwell H. Turner,et al.  Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code , 2016, Neuron.

[24]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[25]  A. Pouget,et al.  Not Noisy, Just Wrong: The Role of Suboptimal Inference in Behavioral Variability , 2012, Neuron.

[26]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[27]  W. Bair,et al.  Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior , 2001, The Journal of Neuroscience.

[28]  Peter E. Latham,et al.  Robust information propagation through noisy neural circuits , 2016, PLoS Comput. Biol..

[29]  T. Sejnowski,et al.  23 problems in systems neuroscience , 2006 .

[30]  Rava Azeredo da Silveira,et al.  High-Fidelity Coding with Correlated Neurons , 2013, PLoS Comput. Biol..

[31]  Alexander S. Ecker,et al.  State Dependence of Noise Correlations in Macaque Primary Visual Cortex , 2014, Neuron.

[32]  Rava Azeredo da Silveira,et al.  Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.

[33]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[34]  Yu Hu,et al.  The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes , 2013, PLoS Comput. Biol..

[35]  Maoz Shamir,et al.  Emerging principles of population coding: in search for the neural code , 2014, Current Opinion in Neurobiology.

[36]  Eric Shea-Brown,et al.  Input nonlinearities can shape beyond-pairwise correlations and improve information transmission by neural populations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[38]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[40]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[41]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[42]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Wei Ji Ma,et al.  A Fast and Simple Population Code for Orientation in Primate V1 , 2012, The Journal of Neuroscience.

[44]  Cyriel M A Pennartz,et al.  Population-Level Neural Codes Are Robust to Single-Neuron Variability from a Multidimensional Coding Perspective. , 2016, Cell reports.

[45]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[46]  Eric Shea-Brown,et al.  Triplet correlations among similarly tuned cells impact population coding , 2015, Front. Comput. Neurosci..

[47]  Benoit P. Delhaye,et al.  Key considerations in designing a somatosensory neuroprosthesis , 2016, Journal of Physiology-Paris.

[48]  Alexander S. Ecker,et al.  The Effect of Noise Correlations in Populations of Diversely Tuned Neurons , 2011, The Journal of Neuroscience.