The Hardness of Code Equivalence over F q and its Application to Code-based Cryptography

The code equivalence problem is to decide whether two linear codes over \(\mathbb{F}_{q}\) are identical up to a linear isometry of the Hamming space. In this paper, we review the hardness of code equivalence over \(\mathbb{F}_q\) due to some recent negative results and argue on the possible implications in code-based cryptography. In particular, we present an improved version of the three-pass identification scheme of Girault and discuss on a connection between code equivalence and the hidden subgroup problem.

[1]  Rita Procesi,et al.  Codes and groups , 2006 .

[2]  Philippe Gaborit,et al.  A new zero-knowledge code based identification scheme with reduced communication , 2011, 2011 IEEE Information Theory Workshop.

[3]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[4]  P. Kaski,et al.  Classification Algorithms for Codes and Designs , 2005 .

[5]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[6]  P. Godlewski,et al.  Coding Theory and Applications , 1986, Lecture Notes in Computer Science.

[7]  P. Gaborit,et al.  Identity-based identification and signature schemes using correcting codes , 2007 .

[8]  Adalbert Kerber,et al.  Isometry Classes of Indecomposable Linear Codes , 1995, AAECC.

[9]  Marc Girault,et al.  Lightweight code-based identification and signature , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  Marc Girault,et al.  A (non-practical) three-pass identification protocol using coding theory , 1990, AUSCRYPT.

[11]  Douglas R. Stinson,et al.  Advances in Cryptology — CRYPTO’ 93 , 2001, Lecture Notes in Computer Science.

[12]  Jennifer Seberry,et al.  Advances in Cryptology — AUSCRYPT '90 , 1990, Lecture Notes in Computer Science.

[13]  Ieee Staff 2013 IEEE Conference on Computational Complexity (CCC) , 2012 .

[14]  Jean-Jacques Quisquater,et al.  Advances in Cryptology — EUROCRYPT ’89 , 1991, Lecture Notes in Computer Science.

[15]  Matthieu Finiasz,et al.  How to Achieve a McEliece-Based Digital Signature Scheme , 2001, ASIACRYPT.

[16]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[17]  Thomas Feulner The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes , 2009, Adv. Math. Commun..

[18]  Elisabeth Oswald,et al.  A Comprehensive Evaluation of Mutual Information Analysis Using a Fair Evaluation Framework , 2011, CRYPTO.

[19]  Erez Petrank,et al.  Is code equivalence easy to decide? , 1997, IEEE Trans. Inf. Theory.

[20]  Joshua A. Grochow,et al.  Code equivalence and group isomorphism , 2011, SODA '11.

[21]  Christiane Peters,et al.  Information-Set Decoding for Linear Codes over Fq , 2010, PQCrypto.

[22]  Raphael Overbeck,et al.  Code-based cryptography , 2009 .

[23]  Dirk L. Vertigan,et al.  Bicycle Dimension and Special Points of the Tutte Polynomial , 1998, J. Comb. Theory, Ser. B.

[24]  Sami Harari A new authentication algorithm , 1988, Coding Theory and Applications.

[25]  Pierre-Louis Cayrel,et al.  Identity-Based Identification and Signature Schemes using Error Correcting Codes , 2009, Identity-Based Cryptography.

[26]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[27]  Raphaël Clifford,et al.  ACM-SIAM Symposium on Discrete Algorithms , 2015, SODA 2015.

[28]  Nicolas Sendrier,et al.  How easy is code equivalence over F_q , 2013 .

[29]  Jessie Macwilliams Error-correcting codes for multiple-level transmission , 1961 .

[30]  Alexander Russell,et al.  Quantum Fourier sampling, Code Equivalence, and the quantum security of the McEliece and Sidelnikov cryptosystems , 2011, ArXiv.

[31]  Sidi Mohamed El Yousfi Alaoui,et al.  A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome Decoding Problem , 2010, Selected Areas in Cryptography.

[32]  Nicolas Sendrier,et al.  On the Dimension of the Hull , 1997, SIAM J. Discret. Math..

[33]  H. Fripertinger Enumeration of Linear Codes by Applying Methods from Algebraic Combinatorics , 1996 .

[34]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[35]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[36]  Jacques Stern,et al.  An Alternative to the Fiat-Shamir Protocol , 1989, EUROCRYPT.

[37]  Jacques Stern,et al.  A New Identification Scheme Based on Syndrome Decoding , 1993, CRYPTO.

[38]  Aggelos Kiayias,et al.  Polynomial Reconstruction Based Cryptography , 2001, Selected Areas in Cryptography.

[39]  Alexander Russell,et al.  McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks , 2011, CRYPTO.

[40]  Nicolas Sendrier,et al.  Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.

[41]  Patric R. J. Östergård,et al.  Classification Algorithms for Codes and Designs (Algorithms and Computation in Mathematics) , 2005 .

[42]  H. Fripertinger Enumeration of the Semilinear Isometry Classes of Linear Codes , 2005 .

[43]  Iliya Bouyukliev About the code equivalence , 2007 .

[44]  A. Kerber,et al.  Error-correcting linear codes : classification by isometry and applications , 2006 .

[45]  Shu Lin,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1999, Lecture Notes in Computer Science.