Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces

In this paper, we apply a homotopy algorithm to the problem of finding points in a moving body that lie on specific algebraic surfaces for a given set of spatial configurations of the body. This problem is a generalization of Burmester's determination of points in a body that lie on a circle for five planar positions. We focus on seven surfaces that we term "reachable" because they correspond to serial chains with two degree-of-freedom positioning structures combined with a three degree-of-freedom spherical wrist. A homotopy algorithm based on generalized linear products is used to provide a convenient estimate of the number of solutions of these polynomial systems. A parallelized version of this algorithm was then used to numerically determine all of the solutions.

[1]  F. Freudenstein Advanced mechanism design: Analysis and synthesis: Vol. 2, by G. N. Sandor and A. G. Erdman. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984, 688 p , 1985 .

[2]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[3]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[4]  Layne T. Watson,et al.  The Parallel Complexity of Embedding Algorithms for the Solution of Systems of Nonlinear Equations , 1993, IEEE Trans. Parallel Distributed Syst..

[5]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[6]  Hai-Jun Su,et al.  Kinematic Synthesis of RPS Serial Chains , 2003, DAC 2003.

[7]  Bernard Roth,et al.  Elimination Methods for Spatial Synthesis , 1995 .

[8]  A. Morgan,et al.  Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics , 1990 .

[9]  Bernard Roth,et al.  Design Equations for the Finitely and Infinitesimally Separated Position Synthesis of Binary Links and Combined Link Chains , 1969 .

[10]  Charles W. Wampler,et al.  An efficient start system for multi-homogeneous polynomial continuation , 1993 .

[11]  Layne T. Watson,et al.  The Granularity of Parallel Homotopy Algorithms for Polynomial Systems of Equations , 1988 .

[12]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[13]  Charles W. Wampler,et al.  A product-decomposition bound for Bezout numbers , 1995 .

[14]  Tangan Gao,et al.  Algorithm 846: MixedVol: a software package for mixed-volume computation , 2005, TOMS.

[15]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[16]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[17]  Constantinos Mavroidis,et al.  Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation , 2002 .

[18]  Leo Joskowicz,et al.  Kinematic synthesis , 2001 .

[19]  C. Innocenti Polynomial Solution of the Spatial Burmester Problem , 1995 .

[20]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[21]  L Burmester,et al.  Lehrbuch der Kinematik , 1888 .

[22]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[23]  Layne T. Watson,et al.  Note on unit tangent vector computation for homotopy curve tracking on a hypercube , 1991, Parallel Comput..

[24]  Han Sung Kim,et al.  Kinematic Synthesis of Spatial 3-RPS Parallel Manipulators , 2002 .

[25]  J. Verschelde,et al.  The GBQ -algorithm for constructing start systems of homotopies for polynomial systems , 1993 .

[26]  J. Michael McCarthy,et al.  On the Seven Position Synthesis of a 5-SS Platform Linkage , 2001 .

[27]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[28]  A. Morgan,et al.  Coefficient-parameter polynomial continuation , 1989 .

[29]  Jan Verschelde,et al.  Advances in Polynomial Continuation for Solving Problems in Kinematics , 2004 .

[30]  Hai-Jun Su,et al.  Geometric Design of Cylindric PRS Serial Chains , 2004 .

[31]  Hai-Jun Su,et al.  An Extensible Java Applet for Spatial Linkage Synthesis , 2002 .

[32]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[33]  Madhusudan Raghavan Suspension Mechanism Synthesis for Linear Toe Curves , 2002 .

[34]  Anthony Skjellum,et al.  Using MPI: portable parallel programming with the message-passing interface, 2nd Edition , 1999, Scientific and engineering computation series.

[35]  Xiaoshen Wang,et al.  Finding All Isolated Zeros of Polynomial Systems inCnvia Stable Mixed Volumes , 1999, J. Symb. Comput..

[36]  Steven M. Wise,et al.  Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations , 2000, TOMS.

[37]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .