Processing of global form and motion in migraineurs

[1]  Georgios A Keliris,et al.  Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli , 2005, Nature Neuroscience.

[2]  David R. Badcock,et al.  Interactions between luminance and contrast signals in global form detection , 2005, Vision Research.

[3]  A. McKendrick,et al.  An Analysis of the Factors Associated with Visual Field Deficits Measured with Flickering Stimuli in-between Migraine , 2004, Cephalalgia : an international journal of headache.

[4]  D. Badcock,et al.  Motion Processing Deficits in Migraine , 2004, Cephalalgia : an international journal of headache.

[5]  R. Ricci,et al.  1 Hz rTMS enhances extrastriate cortex activity in migraine , 2003, Neurology.

[6]  Allison M McKendrick,et al.  Pattern cues disambiguate perceived direction in simple moving stimuli , 2003, Vision Research.

[7]  J. Schoenen,et al.  Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance , 2003, Clinical Neurophysiology.

[8]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[9]  J. Schoenen,et al.  Electrophysiological Studies in Migraine: A Comprehensive Review of Their Interest and Limitations , 2003, Cephalalgia : an international journal of headache.

[10]  D. Badcock,et al.  Contrast-processing dysfunction in both magnocellular and parvocellular pathways in migraineurs with or without aura. , 2003, Investigative ophthalmology & visual science.

[11]  Sieu K. Khuu,et al.  Global speed processing: evidence for local averaging within, but not across two speed ranges , 2002, Vision Research.

[12]  K. Welch,et al.  Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes , 2002, Neurology.

[13]  L. Battelli,et al.  Transcranial magnetic stimulation of visual area V5 in migraine , 2002, Neurology.

[14]  Christopher C. Pack,et al.  Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys , 2001, Nature.

[15]  Denis G. Pelli,et al.  Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity , 2001 .

[16]  A J Shepherd,et al.  Increased visual after-effects following pattern adaptation in migraine: a lack of intracortical excitation? , 2001, Brain : a journal of neurology.

[17]  W. Stewart,et al.  Clinical Utility of an Instrument Assessing Migraine Disability: The Migraine Disability Assessment (MIDAS) Questionnaire , 2001, Headache.

[18]  Andrew J Anderson,et al.  Multiple processes mediate flicker sensitivity , 2001, Vision Research.

[19]  A M McKendrick,et al.  Variability components of standard automated perimetry and frequency-doubling technology perimetry. , 2001, Investigative ophthalmology & visual science.

[20]  B. Rosen,et al.  Mechanisms of migraine aura revealed by functional MRI in human visual cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Badcock,et al.  Visual dysfunction between migraine events. , 2001, Investigative ophthalmology & visual science.

[22]  E. Chronicle,et al.  Suppression of perception in migraine: Evidence for reduced inhibition in the visual cortex , 2001 .

[23]  P. Koehler,et al.  Suppression of perception in migraine , 2001, Neurology.

[24]  Ravi S. Menon,et al.  An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings , 2000, Current Biology.

[25]  Algis J Vingrys,et al.  Interactions between flicker thresholds and luminance pedestals , 2000, Vision Research.

[26]  J. Gallant,et al.  A Human Extrastriate Area Functionally Homologous to Macaque V4 , 2000, Neuron.

[27]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[28]  E. Chronicle,et al.  Cortical Hyperexcitability is Cortical Under-Inhibition: Evidence From a Novel Functional Test of Migraine Patients , 2000, Cephalalgia : an international journal of headache.

[29]  David R. Badcock,et al.  Coherent global motion in the absence of coherent velocity signals , 2000, Current Biology.

[30]  D. Badcock,et al.  Visual field losses in subjects with migraine headaches. , 2000, Investigative ophthalmology & visual science.

[31]  F. Wilkinson,et al.  Visual Contrast Gain Control in Migraine: Measures of Visual Cortical Excitability and Inhibition , 2000, Cephalalgia : an international journal of headache.

[32]  F. Wilkinson,et al.  Orientation Discrimination Thresholds in Migraine: A Measure of Visual Cortical Inhibition , 2000, Cephalalgia.

[33]  P. Artes,et al.  Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. , 2000, Investigative ophthalmology & visual science.

[34]  M W Greenlee,et al.  Human cortical areas underlying the perception of optic flow: brain imaging studies. , 2000, International review of neurobiology.

[35]  Thomas D Albright,et al.  Seeing the Big Picture Integration of Image Cues in the Primate Visual System , 1999, Neuron.

[36]  H. Wilson,et al.  Detection of global structure in Glass patterns: implications for form vision , 1998, Vision Research.

[37]  J. Schoenen Cortical electrophysiology in migraine and possible pathogenetic implications. , 1998, Clinical neuroscience.

[38]  H. Wilson,et al.  Concentric orientation summation in human form vision , 1997, Vision Research.

[39]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[40]  O. Grüsser Migraine phosphenes and the retino-cortical magnification factor , 1995, Vision Research.

[41]  S. Kosslyn,et al.  Visual processing in migraineurs. , 1995, Brain : a journal of neurology.

[42]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[43]  David R. Badcock,et al.  Global motion perception: Interaction of the ON and OFF pathways , 1994, Vision Research.

[44]  J. D. Tompkins,et al.  Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma. , 1993, Investigative ophthalmology & visual science.

[45]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[46]  C. Baker,et al.  Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Algis J. Vingrys,et al.  The Opticom M‐600™: A new LED automated perimeter , 1990 .

[48]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[49]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[50]  C. Johnson,et al.  Visual field loss in migraine. , 1989, Ophthalmology.

[51]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Headache Classification Committee of the International Headache Society. , 1988, Cephalalgia : an international journal of headache.

[53]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[54]  L. Glass Moiré Effect from Random Dots , 1969, Nature.

[55]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[56]  Vision Research , 1961, Nature.