Performances of pure random walk algorithms on constraint satisfaction problems with growing domains

The performances of two types of pure random walk (PRW) algorithms for a model of constraint satisfaction problem with growing domains (called Model RB) are investigated. Threshold phenomenons appear for both algorithms. In particular, when the constraint density $$r$$r is smaller than a threshold value $$r_d$$rd, PRW algorithms can solve instances of Model RB efficiently, but when $$r$$r is bigger than the $$r_d$$rd, they fail. Using a physical method, we find out the threshold values for both algorithms. When the number of variables $$N$$N is large, the threshold values tend to zero, so generally speaking PRW does not work on Model RB. By performing experiments, we show that PRW strategy cannot do better than other fundamental strategies.

[1]  Uwe Schöning,et al.  A Probabilistic Algorithm for k -SAT Based on Limited Local Search and Restart , 2002, Algorithmica.

[2]  Yun Fan,et al.  On the phase transitions of random k-constraint satisfaction problems , 2011, Artif. Intell..

[3]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[4]  W Xu An Analysis of Backtrack-free Algorithm on a Constraint Satisfaction Problem with Growing Domains , 2014 .

[5]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[6]  Rémi Monasson,et al.  A Study of Pure Random Walk on Random Satisfiability Problems with "Physical" Methods , 2003, SAT.

[7]  Yun Fan,et al.  A general model and thresholds for random constraint satisfaction problems , 2012, Artif. Intell..

[8]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[9]  Barbara M. Smith,et al.  Constructing an asymptotic phase transition in random binary constraint satisfaction problems , 2001, Theor. Comput. Sci..

[10]  R. Monasson,et al.  Relaxation and metastability in a local search procedure for the random satisfiability problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Jing Shen,et al.  Bounding the scaling window of random constraint satisfaction problems , 2014, Journal of Combinatorial Optimization.

[12]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[13]  Kaile Su,et al.  Large Hinge Width on Sparse Random Hypergraphs , 2011, IJCAI.

[14]  Zhiming Zheng,et al.  Threshold behaviors of a random constraint satisfaction problem with exact phase transitions , 2011, Inf. Process. Lett..

[15]  Ke Xu,et al.  Large hypertree width for sparse random hypergraphs , 2015, J. Comb. Optim..

[16]  Jun Liu,et al.  On the constraint length of random k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CSP , 2014, Journal of Combinatorial Optimization.

[17]  Ke Xu,et al.  A Note on Treewidth in Random Graphs , 2011, COCOA.

[18]  Christophe Lecoutre,et al.  Constraint Networks: Techniques and Algorithms , 2009 .

[19]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[20]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[21]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  Malte Helmert,et al.  A Stochastic Local Search Approach to Vertex Cover , 2007, KI.

[23]  Alan M. Frieze,et al.  Analyzing Walksat on Random Formulas , 2011, ANALCO.

[24]  Alan M. Frieze,et al.  On smoothed k-CNF formulas and the Walksat algorithm , 2009, SODA.

[25]  Ping Huang,et al.  An upper (lower) bound for Max (Min) CSP , 2013, Science China Information Sciences.

[26]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[27]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[28]  Ming-Te Chao,et al.  Probabilistic Analysis of Two Heuristics for the 3-Satisfiability Problem , 1986, SIAM J. Comput..

[29]  J. Culberson,et al.  Consistency and Random Constraint Satisfaction Models , 2007, J. Artif. Intell. Res..

[30]  Wei Jiang,et al.  Two Hardness Results on Feedback Vertex Sets , 2011, FAW-AAIM.

[31]  Ke Xu,et al.  Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Aomar Osmani,et al.  A Model to Study Phase Transition and Plateaus in Relational Learning , 2008, ILP.

[33]  Alexander K. Hartmann,et al.  Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Eli Ben-Sasson,et al.  Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs , 2007, SIAM J. Comput..