Performances of pure random walk algorithms on constraint satisfaction problems with growing domains
暂无分享,去创建一个
Wei Xu | Fuzhou Gong | W. Xu | Fuzhou Gong
[1] Uwe Schöning,et al. A Probabilistic Algorithm for k -SAT Based on Limited Local Search and Restart , 2002, Algorithmica.
[2] Yun Fan,et al. On the phase transitions of random k-constraint satisfaction problems , 2011, Artif. Intell..
[3] Toby Walsh,et al. Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.
[4] W Xu. An Analysis of Backtrack-free Algorithm on a Constraint Satisfaction Problem with Growing Domains , 2014 .
[5] Alan M. Frieze,et al. On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.
[6] Rémi Monasson,et al. A Study of Pure Random Walk on Random Satisfiability Problems with "Physical" Methods , 2003, SAT.
[7] Yun Fan,et al. A general model and thresholds for random constraint satisfaction problems , 2012, Artif. Intell..
[8] Martin E. Dyer,et al. Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..
[9] Barbara M. Smith,et al. Constructing an asymptotic phase transition in random binary constraint satisfaction problems , 2001, Theor. Comput. Sci..
[10] R. Monasson,et al. Relaxation and metastability in a local search procedure for the random satisfiability problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Jing Shen,et al. Bounding the scaling window of random constraint satisfaction problems , 2014, Journal of Combinatorial Optimization.
[12] Yannis C. Stamatiou,et al. Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.
[13] Kaile Su,et al. Large Hinge Width on Sparse Random Hypergraphs , 2011, IJCAI.
[14] Zhiming Zheng,et al. Threshold behaviors of a random constraint satisfaction problem with exact phase transitions , 2011, Inf. Process. Lett..
[15] Ke Xu,et al. Large hypertree width for sparse random hypergraphs , 2015, J. Comb. Optim..
[16] Jun Liu,et al. On the constraint length of random k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CSP , 2014, Journal of Combinatorial Optimization.
[17] Ke Xu,et al. A Note on Treewidth in Random Graphs , 2011, COCOA.
[18] Christophe Lecoutre,et al. Constraint Networks: Techniques and Algorithms , 2009 .
[19] Wei Li,et al. Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..
[20] Ke Xu,et al. Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..
[21] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[22] Malte Helmert,et al. A Stochastic Local Search Approach to Vertex Cover , 2007, KI.
[23] Alan M. Frieze,et al. Analyzing Walksat on Random Formulas , 2011, ANALCO.
[24] Alan M. Frieze,et al. On smoothed k-CNF formulas and the Walksat algorithm , 2009, SODA.
[25] Ping Huang,et al. An upper (lower) bound for Max (Min) CSP , 2013, Science China Information Sciences.
[26] Wei Li,et al. Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..
[27] Toby Walsh,et al. Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.
[28] Ming-Te Chao,et al. Probabilistic Analysis of Two Heuristics for the 3-Satisfiability Problem , 1986, SIAM J. Comput..
[29] J. Culberson,et al. Consistency and Random Constraint Satisfaction Models , 2007, J. Artif. Intell. Res..
[30] Wei Jiang,et al. Two Hardness Results on Feedback Vertex Sets , 2011, FAW-AAIM.
[31] Ke Xu,et al. Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Aomar Osmani,et al. A Model to Study Phase Transition and Plateaus in Relational Learning , 2008, ILP.
[33] Alexander K. Hartmann,et al. Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] Eli Ben-Sasson,et al. Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs , 2007, SIAM J. Comput..