Selection of variables for stabilizing control using pole vectors

For a linear multivariable plant, it is known from earlier work that the easy computable pole vectors provide useful information about in which input channel (actuator) a given mode is controllable and in which output channel (sensor) it is observable. In this note, we provide a rigorous theoretical basis for the use of pole vectors, by providing a link to previous results on performance limitations for unstable plants.

[1]  M. Tarokh Fixed modes in multivariable systems using constrained controllers , 1985, Autom..

[2]  M. Tarokh Measures for controllability, observability and fixed modes , 1992 .

[3]  Sigurd Skogestad,et al.  Selection of Variables for Regulatory Control Using Pole Vectors , 1998 .

[4]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[5]  N. F. Benninger Proper Choice of Input and Output Variables by Means of New Consistent Structure Measures , 1987 .

[6]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[7]  S. Skogestad,et al.  Controllability Analysis for Unstable Processes , 1992 .

[8]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[9]  Sigurd Skogestad,et al.  Achievable performance of multivariable systems with unstable zeros and poles , 2001 .

[10]  S. Skogestad,et al.  Stabilization of Desired Flow Regimes in Pipelines , 2001 .

[11]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[12]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[14]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[15]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[16]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[17]  K. Glover Robust stabilization of linear multivariable systems: relations to approximation , 1986 .

[18]  Kietil Havre,et al.  Taming slug flow in pipelines , 2000 .