Graphbots: cooperative motion planning in discrete spaces

Most previous theoretical work on motion planning for a group of robots has addressed the problem of path planning for the individual robots sequentially, in geometrically simple regions of Euclidean space (e.g. a planar region containing polygonal obstacles). In this paper, we define a version of the motion-planning problem in which the robots move simultaneously. We establish conditions under which a team of robots having a particular configuration can move from any start location to any goal destination in a graph-structured space. We show that, for a group of robots that maintain a fixed formation, we can find the "shortest" path in polynomial time, and we give faster algorithms for special kinds of environments.

[1]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[2]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[3]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  Bruce Randall Donald,et al.  Analyzing teams of cooperating mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Robert E. Tarjan,et al.  A quick method for finding shortest pairs of disjoint paths , 1984, Networks.

[6]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  Michael Jenkin,et al.  Using Multiple Markers In Graph Exploration , 1990, Other Conferences.

[8]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[9]  Vladimir J. Lumelsky,et al.  The ties that bind: Motion planning for multiple tethered robots , 1996, Robotics Auton. Syst..

[10]  Lynne E. Parker Designing control laws for cooperative agent teams , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[11]  John F. Canny,et al.  A motion planner for multiple mobile robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  Madhu Sudan,et al.  Motion planning on a graph , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[14]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[15]  Blanche Descartes,et al.  Review: J. A. Bondy and U. S. R. Murty, Graph theory with applications , 1977 .

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  Michael Jenkin,et al.  Robotic exploration as graph construction , 1991, IEEE Trans. Robotics Autom..

[18]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[19]  J. Y. S. Luh,et al.  Coordination and control of a group of small mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[20]  Larry S. Davis,et al.  Stealth terrain navigation , 1993, IEEE Trans. Syst. Man Cybern..

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Azriel Rosenfeld,et al.  Graphbots: Mobility in Discrete Spaces , 1995, ICALP.