Polynomial Threshold Functions and Boolean Threshold Circuits

We initiate a comprehensive study of the complexity of computing Boolean functions by polynomial threshold functions (PTFs) on general Boolean domains. A typical example of a general Boolean domain is {1,2} n . We are mainly interested in the length (the number of monomials) of PTFs, with their degree and weight being of secondary interest.

[1]  Janos Simon,et al.  Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..

[2]  Alexander A. Razborov,et al.  Majority gates vs. general weighted threshold gates , 2005, computational complexity.

[3]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[4]  Jehoshua Bruck,et al.  Polynomial threshold functions, AC functions and spectrum norms , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[5]  Pavel Pudlák,et al.  On the Computational Power of Depth-2 Circuits with Threshold and Modulo Gates , 1997, Theor. Comput. Sci..

[6]  N. Nisan The communication complexity of threshold gates , 1993 .

[7]  Richard Beigel Perceptrons, PP, and the polynomial hierarchy , 2005, computational complexity.

[8]  Alexander A. Sherstov SeparatingAC0 from Depth-2 Majority Circuits , 2009, SIAM J. Comput..

[9]  Jürgen Forster A linear lower bound on the unbounded error probabilistic communication complexity , 2002, J. Comput. Syst. Sci..

[10]  Kristoffer Arnsfelt Hansen,et al.  Some Meet-in-the-Middle Circuit Lower Bounds , 2004, MFCS.

[11]  Kristoffer Arnsfelt Hansen,et al.  Exact Threshold Circuits , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[12]  Nikolai K. Vereshchagin,et al.  On Computation and Communication with Small Bias , 2007, Computational Complexity Conference.

[13]  Satyanarayana V. Lokam,et al.  Relations Between Communication Complexity, Linear Arrangements, and Computational Complexity , 2001, FSTTCS.

[14]  Alexander A. Razborov,et al.  n^Omega(log n) Lower Bounds on the Size of Depth-3 Threshold Circuits with AND Gates at the Bottom , 1993, Information Processing Letters.

[15]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[16]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[17]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[18]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1991, computational complexity.

[19]  M. Saks Slicing the hypercube , 1993 .

[20]  Rocco A. Servedio,et al.  Learning DNF in time 2Õ(n1/3) , 2004, J. Comput. Syst. Sci..

[21]  Alexander A. Razborov,et al.  The Sign-Rank of AC0 , 2010, SIAM J. Comput..

[22]  Rocco A. Servedio,et al.  Learning intersections and thresholds of halfspaces , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[23]  Alexander A. Sherstov Communication Lower Bounds Using Dual Polynomials , 2008, Bull. EATCS.

[24]  Richard J. Lipton,et al.  Polynomials that Sign Represent Parity and Descartes’ Rule of Signs , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[25]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[26]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[27]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[28]  Mikael Goldmann,et al.  On the Power of a Threshold Gate at the Top , 1997, Inf. Process. Lett..

[29]  Pavel Pudlák,et al.  Computing Boolean functions by polynomials and threshold circuits , 1998, computational complexity.

[30]  Bernd Sturmfels,et al.  Tropical Mathematics , 2004, math/0408099.