A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot

[1]  M Vukobratović,et al.  On the stability of biped locomotion. , 1970, IEEE transactions on bio-medical engineering.

[2]  M. Gladden,et al.  Feedback and Motor Control in Invertebrates and Vertebrates , 1985, Springer Netherlands.

[3]  S. Grillner Neural Control of Vertebrate Locomotion - Central Mechanisms and Reflex Interaction with Special Reference to the Cat , 1985 .

[4]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[5]  P. Stein,et al.  Neurobiology of Vertebrate Locomotion , 1986, Wenner-Gren Center International Symposium Series.

[6]  P. A. Getting Understanding Central Pattern Generators: Insights Gained from the Study of Invertebrate Systems , 1986 .

[7]  S. Rossignol,et al.  Neural Control of Rhythmic Movements in Vertebrates , 1988 .

[8]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[9]  V. Reggie Edgerton,et al.  Neurobiological basis of human locomotion , 1991 .

[10]  Atsuo Takanishi Biped Walking Robot Compensating Moment by Trunk Motion , 1993, J. Robotics Mechatronics.

[11]  P. Jacobs,et al.  Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. , 1994, Brain : a journal of neurology.

[12]  Gentaro Taga,et al.  Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the , 1994 .

[13]  Shinzo Kitamura,et al.  Theoretical studies on neuro oscillator for application of biped locomotion , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[15]  S. Grillner,et al.  Neural networks for vertebrate locomotion. , 1996, Scientific American.

[16]  F. Delcomyn Foundations of neurobiology , 1997 .

[17]  Yasuo Kuniyoshi,et al.  Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[18]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[19]  Jong H. Park,et al.  ZMP trajectory generation for reduced trunk motions of biped robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[20]  Jerry E. Pratt,et al.  Stable adaptive control of a bipedal walking; robot with CMAC neural networks , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[21]  S. Grillner,et al.  Neuronal Control of Locomotion 'From Mollusc to Man ' , 1999 .

[22]  Jong Hyeon Park,et al.  ZMP compensation by online trajectory generation for biped robots , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[23]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[24]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Hirochika Inoue,et al.  Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[26]  C. Capaday The special nature of human walking and its neural control , 2002, Trends in Neurosciences.

[27]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[28]  Shuuji Kajita,et al.  International Journal of Humanoid Robotics c ○ World Scientific Publishing Company An Analytical Method on Real-time Gait Planning for a Humanoid Robot , 2022 .

[29]  Yoshihiro Kuroki,et al.  Integrated motion control for walking, jumping and running on a small bipedal entertainment robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[30]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[31]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[32]  Atsuo Takanishi,et al.  A biologically inspired CPG-ZMP control system for the real-time balance of a single-legged belly dancing robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[33]  Jun Morimoto,et al.  An empirical exploration of a neural oscillator for biped locomotion control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  Örjan Ekeberg,et al.  A combined neuronal and mechanical model of fish swimming , 1993, Biological Cybernetics.

[35]  Changjiu Zhou,et al.  Robo-Erectus: Team Description 2005 , 2005 .

[36]  Yoshihiko Nakamura,et al.  A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  K. Pearson,et al.  Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. , 2005, Journal of neurophysiology.

[38]  Jimmy Or,et al.  A Control System for a Flexible Spine Belly-Dancing Humanoid , 2006, Artificial Life.

[39]  Atsuo Takanishi,et al.  Development of a new humanoid robot WABIAN-2 , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[40]  Eiichi Yoshida,et al.  Task-driven Support Polygon Reshaping for Humanoids , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[41]  Julia T. Choi,et al.  Adaptation reveals independent control networks for human walking , 2007, Nature Neuroscience.

[42]  Stefano Tamburin,et al.  Belly dancer's myoclonus and chronic abdominal pain: pain-related dysinhibition of a spinal cord central pattern generator? , 2007, Parkinsonism & related disorders.

[43]  Daniel P Ferris,et al.  Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks , 2007, The Journal of physiology.

[44]  Gordon Cheng,et al.  Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.

[45]  Wenwei Yu,et al.  The roles of CPG phase modulation and reflexive muscular patterns in balance recovery during walking---a simulation study , 2008 .