A floating-point genetic algorithm for solving the unit commitment problem

Abstract This paper proposes a floating-point genetic algorithm (FPGA) to solve the unit commitment problem (UCP). Based on the characteristics of typical load demand, a floating-point chromosome representation and an encoding–decoding scheme are designed to reduce the complexities in handling the minimum up/down time limits. Strategic parameters of the FPGA are characterized in detail, i.e., the evaluation function and its constraints, population size, operation styles of selection, crossover operation and probability, mutation operation and probability. A dynamic combination scheme of genetic operators is formulated to explore and exploit the FPGA in the non-convex solution space and multimodal objective function. Experiment results show that the FPGA is a more effective technique among the various styles of genetic algorithms, which can be applied to the practical scheduling tasks in utility power systems.

[1]  A. Rudolf,et al.  A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system , 1999 .

[2]  Richi Nayak,et al.  A hybrid neural network and simulated annealing approach to the unit commitment problem , 2000 .

[3]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[4]  Chuan-Ping Cheng,et al.  Unit commitment by Lagrangian relaxation and genetic algorithms , 2000 .

[5]  Shokri Z. Selim,et al.  Integrating genetic algorithms, tabu search, and simulated annealing for the unit commitment problem , 1999 .

[6]  Alice E. Smith,et al.  A Seeded Memetic Algorithm for Large Unit Commitment Problems , 2002, J. Heuristics.

[7]  D. Dasgupta,et al.  Thermal unit commitment using genetic algorithms , 1994 .

[8]  F. N. Lee,et al.  Short-term thermal unit commitment-a new method , 1988 .

[9]  Jonathan F. Bard,et al.  Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation , 1988, Oper. Res..

[10]  Malcolm Irving,et al.  A genetic algorithm for generator scheduling in power systems , 1996 .

[11]  Anastasios G. Bakirtzis,et al.  A genetic algorithm solution to the unit commitment problem , 1996 .

[12]  K. S. Swarp,et al.  Unit Connuitment Solution Methodology Using Genetic Algorithm , 2002, IEEE Power Engineering Review.

[13]  Narayana Prasad Padhy,et al.  Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms , 2001 .

[14]  Suzannah Yin Wa Wong,et al.  An enhanced simulated annealing approach to unit commitment , 1998 .

[15]  Probability Subcommittee,et al.  IEEE Reliability Test System , 1979, IEEE Transactions on Power Apparatus and Systems.

[16]  Werner Römisch,et al.  Unit commitment in power generation – a basic model and some extensions , 2000, Ann. Oper. Res..

[17]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[18]  Bruce F. Wollenberg,et al.  A unit commitment expert system (power system control) , 1988 .

[19]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[20]  Eiichi Tanaka,et al.  An Evolutionary Programming Solution to the Unit Commitment Problem , 1997 .

[21]  Robert E. Smith,et al.  A genetic algorithm based approach to thermal unit commitment of electric power systems , 1995 .

[22]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[23]  Mohammad Shahidehpour,et al.  The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee , 1999 .

[24]  Hong-Tzer Yang,et al.  Solving the unit commitment problem with a genetic algorithm through a constraint satisfaction technique , 1996 .

[25]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[26]  S. Orero A combination of the genetic algorithm and Lagrangian relaxation decomposition techniques for the generation unit commitment problem , 1997 .

[27]  H. Chen,et al.  Cooperative Coevolutionary Algorithm for Unit Commitment , 2002, IEEE Power Engineering Review.

[28]  M. H. Wong,et al.  An evolving neural network approach in unit commitment solution , 2000, Microprocess. Microsystems.

[29]  Malcolm Irving,et al.  Large scale unit commitment using a hybrid genetic algorithm , 1997 .

[30]  N.P. Padhy,et al.  Unit commitment-a bibliographical survey , 2004, IEEE Transactions on Power Systems.

[31]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[32]  A. Bakirtzis,et al.  A solution to the unit-commitment problem using integer-coded genetic algorithm , 2004, IEEE Transactions on Power Systems.

[33]  Gerald B. Sheblé,et al.  Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm—economic dispatch example , 1996 .

[34]  G. Sheblé,et al.  Genetic algorithm solution of economic dispatch with valve point loading , 1993 .

[35]  A. H. Mantawy,et al.  A new genetic-based tabu search algorithm for unit commitment problem , 1999 .

[36]  Gerald B. Sheblé,et al.  Genetic-based unit commitment algorithm , 1996 .

[37]  C.-P. Cheng,et al.  Unit commitment by annealing-genetic algorithm , 2002 .

[38]  Dick Duffey,et al.  Power Generation , 1932, Transactions of the American Institute of Electrical Engineers.

[39]  Takeshi Nagata,et al.  A Solution for Unit Commitment Using Lagrangian Relaxation Combined with Evolutionary Programming , 1996 .

[40]  Dipankar Dasgupta,et al.  Short term unit-commitment using genetic algorithms , 1993, Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93).

[41]  Ching-Lien Huang,et al.  Application of genetic-based neural networks to thermal unit commitment , 1997 .

[42]  Francisco D. Galiana,et al.  Unit commitment by simulated annealing , 1990 .

[43]  Hong-Tzer Yang,et al.  A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks , 1997 .

[44]  A. H. Mantawy,et al.  A simulated annealing algorithm for unit commitment , 1998 .

[45]  D. Dasgupta,et al.  Unit commitment in thermal power generation using genetic algorithms , 1993 .

[46]  D. P. Kothari,et al.  An expert system approach to the unit commitment problem , 1995 .

[47]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[48]  S. M. Shahidehpour,et al.  Promoting the application of expert systems in short-term unit commitment , 1993 .