Joint Probabilistic Data Association Revisited

In this paper, we revisit the joint probabilistic data association (JPDA) technique and propose a novel solution based on recent developments in finding the m-best solutions to an integer linear program. The key advantage of this approach is that it makes JPDA computationally tractable in applications with high target and/or clutter density, such as spot tracking in fluorescence microscopy sequences and pedestrian tracking in surveillance footage. We also show that our JPDA algorithm embedded in a simple tracking framework is surprisingly competitive with state-of-the-art global tracking methods in these two applications, while needing considerably less processing time.

[1]  Margrit Betke,et al.  Coupling detection and data association for multiple object tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Isabelle Bloch,et al.  Multiple Hypothesis Tracking for Cluttered Biological Image Sequences , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[4]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[5]  Dhruv Batra,et al.  An Efficient Message-Passing Algorithm for the M-Best MAP Problem , 2012, UAI.

[6]  Ram Nevatia,et al.  Learning to associate: HybridBoosted multi-target tracker for crowded scene , 2009, CVPR.

[7]  James J. Little,et al.  A Linear Programming Approach for Multiple Object Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[9]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Mohamed R. Amer,et al.  Multiobject tracking as maximum weight independent set , 2011, CVPR 2011.

[11]  Ramakant Nevatia,et al.  Global data association for multi-object tracking using network flows , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  A. K. Mahalanabis,et al.  Improved multi-target tracking in clutter by PDA smoothing , 1990 .

[13]  Richard I. Hartley,et al.  Application of the IMM-JPDA Filter to Multiple Target Tracking in Total Internal Reflection Fluorescence Microscopy Images , 2012, MICCAI.

[14]  S. Savarese,et al.  Learning an Image-Based Motion Context for Multiple People Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  J. Ferryman,et al.  PETS2009: Dataset and challenge , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[16]  Junjie Yan,et al.  Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[18]  Thomas Mauthner,et al.  Occlusion Geodesics for Online Multi-object Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Luc Van Gool,et al.  Coupled Detection and Trajectory Estimation for Multi-Object Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Branko Ristic,et al.  A Metric for Performance Evaluation of Multi-Target Tracking Algorithms , 2011, IEEE Transactions on Signal Processing.

[21]  Ian D. Reid,et al.  Joint tracking and segmentation of multiple targets , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Robert T. Collins,et al.  Multi-target Tracking by Lagrangian Relaxation to Min-cost Network Flow , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  J. A. Roecker,et al.  Suboptimal joint probabilistic data association , 1993 .

[24]  Margrit Betke,et al.  Efficient track linking methods for track graphs using network-flow and set-cover techniques , 2011, CVPR 2011.

[25]  Charless C. Fowlkes,et al.  Globally-optimal greedy algorithms for tracking a variable number of objects , 2011, CVPR 2011.

[26]  I. Heller,et al.  14 . An Extension of a Theorem of Dantzig’s , 1957 .

[27]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[28]  Konrad Schindler,et al.  Detection- and Trajectory-Level Exclusion in Multiple Object Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ian D. Reid,et al.  Latent Data Association: Bayesian Model Selection for Multi-target Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[31]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[32]  Margrit Betke,et al.  Online Motion Agreement Tracking , 2013, BMVC.

[33]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multi-Target Tracking , 2009, IEEE Transactions on Automatic Control.

[34]  Afshin Dehghan,et al.  GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs , 2012, ECCV.

[35]  Bernt Schiele,et al.  Monocular 3D pose estimation and tracking by detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Amir Globerson,et al.  An LP View of the M-best MAP problem , 2009, NIPS.

[37]  J. A. Roecker Multiple scan joint probabilistic data association , 1995 .

[38]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[39]  Konrad Schindler,et al.  Continuous Energy Minimization for Multitarget Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Gregory Shakhnarovich,et al.  Diverse M-Best Solutions in Markov Random Fields , 2012, ECCV.

[41]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[42]  Frits C. R. Spieksma,et al.  An LP-based algorithm for the data association problem in multitarget tracking , 2003, Comput. Oper. Res..