Full orientation control of epitaxial MoS2 on hBN assisted by substrate defects

Inversion asymmetry in two-dimensional materials grants them fascinating properties such as spin-coupled valley degrees of freedom and piezoelectricity, but at the cost of inversion domain boundaries if the epitaxy of the grown two-dimensional (2D) layer, on a polar substrate, cannot adequately distinguish what are often near-degenerate ${0}^{\ensuremath{\circ}}$ and ${180}^{\ensuremath{\circ}}$ orientations. We employ first-principles calculations to identify a method to lift this near degeneracy: the energetic distinction between eclipsed and staggered configurations during nucleation at a point defect in the substrate. For monolayer ${\mathrm{MoS}}_{2}$ grown on hexagonal boron nitride, the predicted defect complex can be more stable than common ${\mathrm{MoS}}_{2}$ point defects because it is both a donor-acceptor pair and a Frenkel pair shared between adjacent layers of a 2D heterostack. Orientation control is verified in experiments that achieve $\ensuremath{\sim}90%$ consistency in the orientation of as-grown triangular ${\mathrm{MoS}}_{2}$ flakes on hBN, as confirmed by aberration-corrected scanning/transmission electron microscopy. This defect-enhanced orientational epitaxy could provide a general mechanism to break the near-degeneracy of $0/{180}^{\ensuremath{\circ}}$ orientations of polar 2D materials on polar substrates, overcoming a long-standing impediment to scalable synthesis of single-crystal 2D semiconductors.

[1]  M. Terrones,et al.  Defect-Controlled Nucleation and Orientation of WSe2 on hBN: A Route to Single-Crystal Epitaxial Monolayers. , 2019, ACS nano.

[2]  L. Weston,et al.  Native point defects and impurities in hexagonal boron nitride , 2018, Physical Review B.

[3]  Gwo-Ching Wang,et al.  Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. , 2018, Nano letters.

[4]  Xiaotian Zhang,et al.  Etchant-free transfer of 2D nanostructures , 2018, Nanotechnology.

[5]  Zijing Ding,et al.  Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. , 2017, Journal of the American Chemical Society.

[6]  Manish Jain,et al.  CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations , 2017, Comput. Phys. Commun..

[7]  J. Redwing,et al.  Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2 , 2017 .

[8]  Jin-an Shi,et al.  Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN basal Plane. , 2017, Small.

[9]  J. Redwing,et al.  Study on Chemical Vapor Deposition Growth and Transmission electron Microscopy MoS 2 /h-BN Heterostructure , 2016, Microscopy and Microanalysis.

[10]  C. T. Foxon,et al.  Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy , 2016, Scientific Reports.

[11]  Yang‐Kook Sun,et al.  Direct Growth of MoS₂/h-BN Heterostructures via a Sulfide-Resistant Alloy. , 2016, ACS nano.

[12]  P. Chiu,et al.  Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. , 2015, Nano letters.

[13]  M. Bosi Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review , 2015 .

[14]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[15]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[16]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[17]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[18]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[19]  A. Krasheninnikov,et al.  Native defects in bulk and monolayer MoS 2 from first principles , 2015 .

[20]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[21]  P. Lacovig,et al.  Epitaxial growth of a single-domain hexagonal boron nitride monolayer. , 2014, ACS nano.

[22]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[23]  A. Krasheninnikov,et al.  Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials , 2014 .

[24]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[25]  L. Molenkamp,et al.  Suppressing Twin Formation in Bi2Se3 Thin Films , 2014, 1503.06498.

[26]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[27]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[28]  Andras Kis,et al.  Light Generation and Harvesting in a van der Waals Heterostructure , 2014, ACS nano.

[29]  T. Jaramillo,et al.  Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. , 2014, Nature chemistry.

[30]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[31]  S. Larentis,et al.  Band offset and negative compressibility in graphene-MoS2 heterostructures. , 2014, Nano letters.

[32]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[33]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[34]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[35]  T. Heine,et al.  Stacking in bulk and bilayer hexagonal boron nitride. , 2013, Physical review letters.

[36]  A. Sadeghi,et al.  Boron Nitride Monolayer: A Strain-Tunable Nanosensor , 2013, 1309.3056.

[37]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[38]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[39]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[40]  M. Dresselhaus,et al.  Mechanics and Tunable Bandgap by Straining in Single-Layer Hexagonal Boron-Nitride , 2013, 1301.2104.

[41]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[42]  S. Louie,et al.  Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. , 2012, Physical review letters.

[43]  A. Krasheninnikov,et al.  Are we van der Waals ready? , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[45]  H. Xiang,et al.  Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. , 2012, Physical review letters.

[46]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[47]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[48]  Bing Huang,et al.  Defect and impurity properties of hexagonal boron nitride: A first-principles calculation , 2012 .

[49]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[50]  L. Wirtz,et al.  Coupling of excitons and defect states in boron-nitride nanostructures , 2011, 1103.2628.

[51]  Y. Mo Rotational barriers in alkanes , 2011 .

[52]  K. L. Shepard,et al.  Multicomponent fractional quantum Hall effect in graphene , 2010, 1010.1179.

[53]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[54]  You Lin,et al.  An extended defect in graphene as a metallic wire. , 2010, Nature nanotechnology.

[55]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[56]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[57]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[58]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[59]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[60]  P. Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[61]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[62]  Christian Kisielowski,et al.  Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy , 2009 .

[63]  S. Okada Atomic configurations and energetics of vacancies in hexagonal boron nitride: First-principles total-energy calculations , 2009 .

[64]  Jannik C. Meyer,et al.  Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. , 2009, Nano letters.

[65]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[66]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[67]  Shubin Liu Steric effect: a quantitative description from density functional theory. , 2007, The Journal of chemical physics.

[68]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[69]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[70]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[71]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[72]  W. Auwärter,et al.  Defect lines and two-domain structure of hexagonal boron nitride films on Ni(1 1 1) , 2003 .

[73]  W. B. Almeida,et al.  Density functional study of the MoxOy and MoxOy+ (x=1–3; y=1–9) oxide clusters , 2003 .

[74]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[79]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[80]  W. Orellana,et al.  Stability of native defects in hexagonal and cubic boron nitride , 2001 .