Non‐sequential MIMO QFT control of the X‐29 aircraft using a generalized formulation

This paper presents a generalized formulation for multi-input multi-output (MIMO) quantitative feedback theory (QFT) based controller design and analysis, and its application to the control of the X-29 aircraft. The formulation is based on a more general control structure, where input and output transfer function matrices are included to provide additional degrees of freedom in the decentralized MIMO QFT feedback structure, that facilitates the exploitation of directions in MIMO QFT designs. The formulation captures existing design approaches for fully populated MIMO QFT controller design and provides for a directional design logic involving the plant and controller alignment and the directional properties of their multivariable poles and zeros. Horowitz's Singular-G design methodology is placed in the context of the generalized formulation and the Singular-G design for the X-29 is analysed and redesigned using non-sequential MIMO QFT and the formulation, demonstrating its utility. The results highlight a fundamental trade-off between multivariable controller directions for stability and performance in classically formulated design methodologies, elucidate the properties of Singular-G designed controllers for the X-29 and validate recent contributions to the theory for non-sequential MIMO QFT. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  S. Jayasuriya,et al.  Synthesis of controllers for non-minimum phase and unstable systems using non-sequential MIMO quantitative feedback theory , 2004, Proceedings of the 2004 American Control Conference.

[2]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[3]  Suhada Jayasuriya,et al.  Robust Stability of Sequential Multi-input Multi-output Quantitative Feedback Theory Designs , 2005 .

[4]  S. Skogestad,et al.  Improved independent design of robust decentralized controllers , 1993 .

[5]  John C. Doyle Quantitative Feedback Theory (QFT) and Robust Control , 1986, 1986 American Control Conference.

[6]  I. Postlethwaite,et al.  The generalized Nyquist stability criterion and multivariable root loci , 1977 .

[7]  Edward Boje,et al.  Non‐diagonal controllers in MIMO quantitative feedback design , 2002 .

[8]  I. Horowitz Synthesis of feedback systems , 1963 .

[9]  Oded Yaniv,et al.  Quantitative feedback theory—reply to criticisms , 1987 .

[10]  B. Lurie,et al.  Classical feedback control with MATLAB , 2000 .

[11]  Suhada Jayasuriya,et al.  Stability of quantitative feedback designs and the existence of robust QFT controllers , 1994 .

[12]  M. J. Grimble,et al.  Robust MIMO control-system design using eigenstructure assignment and QFT , 2004 .

[13]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[14]  Suhada Jayasuriya,et al.  On stability in nonsequential MIMO QFT designs , 2005 .

[15]  Oded Yaniv Quantitative Feedback Design of Linear and Nonlinear Control Systems , 1999 .

[16]  J. M. De Bedout,et al.  Stability conditions for the sequential design of non-diagonal multivariable feedback controllers , 2002 .

[17]  G. Stein,et al.  Respect the unstable , 2003 .

[18]  Osita D. I. Nwokah,et al.  Quantitative Feedback Design of Decentralized Control Systems , 1993 .

[19]  J. Doyle Robustness of multiloop linear feedback systems , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[20]  Oded Yaniv,et al.  An important property of non-minimum-phase multiple-input-multiple-output feedback systems , 1986 .

[21]  Karl Henrik Johansson,et al.  Decentralized control of sequentially minimum phase systems , 1999, IEEE Trans. Autom. Control..

[22]  Uri Shaked,et al.  Design of linear multivariable systems for stability under large parameter uncertainty , 1977 .

[23]  Manfred Morari,et al.  Design of resilient processing plants. VI: The effect of right-half-plane zeros on dynamic resilience , 1985 .

[24]  Arunabha Bagchi,et al.  Modeling and feedback control of a flexible arm of a robot for prescribed frequency-domain tolerances , 1993, Autom..

[25]  Mario Garcia-Sanz,et al.  Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems , 2005 .

[26]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[27]  Murray Lawrence Kerr Robust control of an articulating flexible structure using MIMO QFT , 2004 .

[28]  Marcel Sidi,et al.  A combined QFT/H ∞ design technique for TDOF uncertain feedback systems , 2002 .

[29]  Matthew A. Franchek,et al.  Robust Nondiagonal Controller Design for Uncertain Multivariable Regulating Systems , 1997 .

[30]  J. Freudenberg,et al.  Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .

[31]  Marcel Sidi Gain-bandwidth limitations of feedback systems with non-minimum-phase plants , 1997 .

[32]  D. Limebeer The application of generalized diagonal dominance to linear system stability theory , 1982 .

[33]  Oded Yaniv MIMO QFT using non-diagonal controllers , 1995 .

[34]  Suhada Jayasuriya,et al.  Robust Stability of Plants with Mixed Uncertainties and Quantitative Feedback Theory , 1993, 1993 American Control Conference.

[35]  G. S. Grewal,et al.  Inverse Nyquist array: a quantitative theory , 1995 .

[36]  Oded Yaniv Synthesis of uncertain MIMO feedback systems for gain and phase margin at different channel breaking points , 1992, Autom..

[37]  Osita D.I. Nwokah,et al.  Algebraic and Topological Aspects of Quantitative Feedback Theory , 1989, 1989 American Control Conference.

[38]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[39]  John J. Burken,et al.  X-29 flight control system: Lessons learned , 1994 .

[40]  I. Horowitz Quantitative synthesis of uncertain multiple input-output feedback system† , 1979 .

[41]  D. J. Collins,et al.  X-29 H-infinity controller synthesis , 1992 .

[42]  S. Jayasuriya,et al.  An improved non-sequential MIMO QFT design method , 2005, Proceedings of the 2005, American Control Conference, 2005..

[43]  Isaac Horowitz,et al.  Design of a 3×3 multivariable feedback system with large plant uncertainty† , 1981 .

[44]  H. Rosenbrock Design of multivariable control systems using the inverse Nyquist array , 1969 .

[45]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[46]  Suhada Jayasuriya,et al.  An improved non‐sequential multi‐input multi‐output quantitative feedback theory design methodology , 2006 .

[47]  I. Horowitz,et al.  A quantitative design method for MIMO linear feedback systems having uncertain plants , 1985, 1985 24th IEEE Conference on Decision and Control.

[48]  Oded Yaniv,et al.  Crossover frequency limitations in MIMO nonminimum phase feedback systems , 2002, IEEE Trans. Autom. Control..

[49]  G. S. Happawana,et al.  Quantitative Feedback Theory Revisited , 2001 .

[50]  Karl-Erik Årzén,et al.  Trends in software and control , 2003 .

[51]  Oded Yaniv Arbitrarily small sensitivity in multiple-input-output uncertain feedback systems , 1991, Autom..

[52]  I. Horowitz Invited paper Survey of quantitative feedback theory (QFT) , 1991 .

[53]  Suhada Jayasuriya Frequency Domain Design for Robust Performance Under Parametric, Unstructured, or Mixed Uncertainties , 1993 .

[54]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[55]  Oded Yaniv,et al.  Criterion for loop stability in MIMO feedback systems having an uncertain plant , 1991 .

[56]  C. Y. Huang,et al.  Application of nonlinear control strategies to aircraft at high angle of attack , 1990, 29th IEEE Conference on Decision and Control.

[57]  Suhada Jayasuriya,et al.  Robust Stability of Closed-Loop Systems Resulting From Nonsequential MIMO-QFT Design , 1996 .

[58]  Marcel J. Sidi,et al.  Design of Robust Control Systems: From Classical to Modern Practical Approaches , 2001 .