Non‐sequential MIMO QFT control of the X‐29 aircraft using a generalized formulation
暂无分享,去创建一个
[1] S. Jayasuriya,et al. Synthesis of controllers for non-minimum phase and unstable systems using non-sequential MIMO quantitative feedback theory , 2004, Proceedings of the 2004 American Control Conference.
[2] Shankar P. Bhattacharyya,et al. Robust Control: The Parametric Approach , 1995 .
[3] Suhada Jayasuriya,et al. Robust Stability of Sequential Multi-input Multi-output Quantitative Feedback Theory Designs , 2005 .
[4] S. Skogestad,et al. Improved independent design of robust decentralized controllers , 1993 .
[5] John C. Doyle. Quantitative Feedback Theory (QFT) and Robust Control , 1986, 1986 American Control Conference.
[6] I. Postlethwaite,et al. The generalized Nyquist stability criterion and multivariable root loci , 1977 .
[7] Edward Boje,et al. Non‐diagonal controllers in MIMO quantitative feedback design , 2002 .
[8] I. Horowitz. Synthesis of feedback systems , 1963 .
[9] Oded Yaniv,et al. Quantitative feedback theory—reply to criticisms , 1987 .
[10] B. Lurie,et al. Classical feedback control with MATLAB , 2000 .
[11] Suhada Jayasuriya,et al. Stability of quantitative feedback designs and the existence of robust QFT controllers , 1994 .
[12] M. J. Grimble,et al. Robust MIMO control-system design using eigenstructure assignment and QFT , 2004 .
[13] Manfred Morari,et al. Interaction measures for systems under decentralized control , 1986, Autom..
[14] Suhada Jayasuriya,et al. On stability in nonsequential MIMO QFT designs , 2005 .
[15] Oded Yaniv. Quantitative Feedback Design of Linear and Nonlinear Control Systems , 1999 .
[16] J. M. De Bedout,et al. Stability conditions for the sequential design of non-diagonal multivariable feedback controllers , 2002 .
[17] G. Stein,et al. Respect the unstable , 2003 .
[18] Osita D. I. Nwokah,et al. Quantitative Feedback Design of Decentralized Control Systems , 1993 .
[19] J. Doyle. Robustness of multiloop linear feedback systems , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[20] Oded Yaniv,et al. An important property of non-minimum-phase multiple-input-multiple-output feedback systems , 1986 .
[21] Karl Henrik Johansson,et al. Decentralized control of sequentially minimum phase systems , 1999, IEEE Trans. Autom. Control..
[22] Uri Shaked,et al. Design of linear multivariable systems for stability under large parameter uncertainty , 1977 .
[23] Manfred Morari,et al. Design of resilient processing plants. VI: The effect of right-half-plane zeros on dynamic resilience , 1985 .
[24] Arunabha Bagchi,et al. Modeling and feedback control of a flexible arm of a robot for prescribed frequency-domain tolerances , 1993, Autom..
[25] Mario Garcia-Sanz,et al. Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems , 2005 .
[26] Graham C. Goodwin,et al. Fundamental Limitations in Filtering and Control , 1997 .
[27] Murray Lawrence Kerr. Robust control of an articulating flexible structure using MIMO QFT , 2004 .
[28] Marcel Sidi,et al. A combined QFT/H ∞ design technique for TDOF uncertain feedback systems , 2002 .
[29] Matthew A. Franchek,et al. Robust Nondiagonal Controller Design for Uncertain Multivariable Regulating Systems , 1997 .
[30] J. Freudenberg,et al. Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .
[31] Marcel Sidi. Gain-bandwidth limitations of feedback systems with non-minimum-phase plants , 1997 .
[32] D. Limebeer. The application of generalized diagonal dominance to linear system stability theory , 1982 .
[33] Oded Yaniv. MIMO QFT using non-diagonal controllers , 1995 .
[34] Suhada Jayasuriya,et al. Robust Stability of Plants with Mixed Uncertainties and Quantitative Feedback Theory , 1993, 1993 American Control Conference.
[35] G. S. Grewal,et al. Inverse Nyquist array: a quantitative theory , 1995 .
[36] Oded Yaniv. Synthesis of uncertain MIMO feedback systems for gain and phase margin at different channel breaking points , 1992, Autom..
[37] Osita D.I. Nwokah,et al. Algebraic and Topological Aspects of Quantitative Feedback Theory , 1989, 1989 American Control Conference.
[38] Ian Postlethwaite,et al. Multivariable Feedback Control: Analysis and Design , 1996 .
[39] John J. Burken,et al. X-29 flight control system: Lessons learned , 1994 .
[40] I. Horowitz. Quantitative synthesis of uncertain multiple input-output feedback system† , 1979 .
[41] D. J. Collins,et al. X-29 H-infinity controller synthesis , 1992 .
[42] S. Jayasuriya,et al. An improved non-sequential MIMO QFT design method , 2005, Proceedings of the 2005, American Control Conference, 2005..
[43] Isaac Horowitz,et al. Design of a 3×3 multivariable feedback system with large plant uncertainty† , 1981 .
[44] H. Rosenbrock. Design of multivariable control systems using the inverse Nyquist array , 1969 .
[45] Keith Glover,et al. A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .
[46] Suhada Jayasuriya,et al. An improved non‐sequential multi‐input multi‐output quantitative feedback theory design methodology , 2006 .
[47] I. Horowitz,et al. A quantitative design method for MIMO linear feedback systems having uncertain plants , 1985, 1985 24th IEEE Conference on Decision and Control.
[48] Oded Yaniv,et al. Crossover frequency limitations in MIMO nonminimum phase feedback systems , 2002, IEEE Trans. Autom. Control..
[49] G. S. Happawana,et al. Quantitative Feedback Theory Revisited , 2001 .
[50] Karl-Erik Årzén,et al. Trends in software and control , 2003 .
[51] Oded Yaniv. Arbitrarily small sensitivity in multiple-input-output uncertain feedback systems , 1991, Autom..
[52] I. Horowitz. Invited paper Survey of quantitative feedback theory (QFT) , 1991 .
[53] Suhada Jayasuriya. Frequency Domain Design for Robust Performance Under Parametric, Unstructured, or Mixed Uncertainties , 1993 .
[54] Isaac Horowitz,et al. Quantitative feedback design theory : QFT , 1993 .
[55] Oded Yaniv,et al. Criterion for loop stability in MIMO feedback systems having an uncertain plant , 1991 .
[56] C. Y. Huang,et al. Application of nonlinear control strategies to aircraft at high angle of attack , 1990, 29th IEEE Conference on Decision and Control.
[57] Suhada Jayasuriya,et al. Robust Stability of Closed-Loop Systems Resulting From Nonsequential MIMO-QFT Design , 1996 .
[58] Marcel J. Sidi,et al. Design of Robust Control Systems: From Classical to Modern Practical Approaches , 2001 .