A hybrid tactile sensor-based obstacle overcoming method for hexapod walking robots

Walking robots are considered as a promising solution for locomotion across irregular or rough terrain. While wheeled or tracked robots require flat surface like roads or driveways, walking robots can adapt to almost any terrain type. However, overcoming diverse terrain obstacles still remains a challenging task even for multi-legged robots with a high number of degrees of freedom. Here, we present a novel method for obstacle overcoming for walking robots based on the use of tactile sensors and generative recurrent neural network for positional error prediction. By using tactile sensors positioned on the front side of the legs, we demonstrate that a robot is able to successfully overcome obstacles close to robots height in the terrains of different complexity. The proposed method can be used by any type of a legged machine and can be considered as a step toward more advanced walking robot locomotion in unstructured terrain and uncertain environment.

[1]  Juan Carlos Arevalo,et al.  Identifying Ground-Robot Impedance to Improve Terrain Adaptability in Running Robots , 2015 .

[2]  Yue Zhao,et al.  Obstacle avoidance and motion planning scheme for a hexapod robot Octopus-III , 2018, Robotics Auton. Syst..

[3]  J. A. Tenreiro Machado,et al.  A literature review on the optimization of legged robots , 2012 .

[4]  Krzysztof Walas Foot design for a hexapod walking robot , 2013 .

[5]  Pablo González de Santos,et al.  Minimizing Energy Consumption in Hexapod Robots , 2009, Adv. Robotics.

[6]  Mahdi Agheli,et al.  Foot Force Based Reactive Stability of Multi-Legged Robots to External Perturbations , 2016, J. Intell. Robotic Syst..

[7]  Dilip Kumar Pratihar,et al.  Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot , 2013 .

[8]  Xiaodong Liu,et al.  Requirements model driven adaption and evolution of Internetware , 2014, Science China Information Sciences.

[9]  Gordon Cheng,et al.  Enhancing Biped Locomotion on Unknown Terrain Using Tactile Feedback , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[10]  M. G. Mohanan,et al.  A survey of robotic motion planning in dynamic environments , 2018, Robotics Auton. Syst..

[11]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  Jie Zhao,et al.  A Force-Sensing System on Legs for Biomimetic Hexapod Robots Interacting with Unstructured Terrain , 2017, Sensors.

[13]  Krzysztof Walas,et al.  A Compact Walking Robot - Flexible Research and Development Platform , 2014, Recent Advances in Automation, Robotics and Measuring Techniques.

[14]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[15]  Atta Ur Rahman,et al.  Small Signal Stability of a Balanced Three-Phase AC Microgrid Using Harmonic Linearization: Parametric-Based Analysis , 2018 .

[16]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance , 1998, Biological Cybernetics.

[17]  D. Raible,et al.  Specification of sensory neuron cell fate from the neural crest. , 2006, Advances in experimental medicine and biology.

[18]  Murtaza Mahommedali Bohra,et al.  Bio-inspired Optimal Locomotion Reconfigurability of Quadruped Rovers using Central Pattern Generators , 2015 .

[19]  Robertas Damasevicius,et al.  Educational Robots for Internet-of-Things Supported Collaborative Learning , 2014, ICIST.

[20]  Dilip Kumar Pratihar,et al.  Kinematics, Dynamics and Power Consumption Analyses for Turning Motion of a Six-Legged Robot , 2014, J. Intell. Robotic Syst..

[21]  Galip Cansever,et al.  Robot trajectory Tracking with Adaptive RBFNN-Based fuzzy sliding Mode Control , 2011, Inf. Technol. Control..

[22]  Jan Faigl,et al.  Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only , 2019, Robotics Auton. Syst..

[23]  Yiqun Liu,et al.  Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation , 2013, Int. J. Robotics Res..

[24]  Florentin Wörgötter,et al.  Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification , 2014, Robotics Auton. Syst..

[25]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[26]  Qing Wu,et al.  Real-Time Dynamic Path Planning of Mobile Robots: A Novel Hybrid Heuristic Optimization Algorithm , 2019, Sensors.

[27]  Andrey V. Savkin,et al.  A strategy for safe 3D navigation of non-holonomic robots among moving obstacles , 2017, Robotica.

[28]  Takeshi Ohashi,et al.  Obstacle avoidance and path planning for humanoid robots using stereo vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[29]  Roland Siegwart,et al.  The current state and future outlook of rescue robotics , 2019, J. Field Robotics.

[30]  Wei Wei,et al.  Energy Balance-Based Steerable Arguments Coverage Method in WSNs , 2018, IEEE Access.

[31]  Ibraheem Kasim Ibraheem,et al.  Multi-Objective Path Planning of an Autonomous Mobile Robot in Static and Dynamic Environments using a Hybrid PSO-MFB Optimisation Algorithm , 2018, Appl. Soft Comput..

[32]  Daniel Withey,et al.  State estimation for a hexapod robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Giuseppe Carbone,et al.  Design Issues for Hexapod Walking Robots , 2014, Robotics.

[34]  Tomoichi Takahashi,et al.  The World robot summit disaster robotics category – achievements of the 2018 preliminary competition , 2019, Adv. Robotics.

[35]  Vladimir J. Lumelsky,et al.  Biped robot locomotion in scenes with unknown obstacles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[36]  José Antonio López Orozco,et al.  Neural virtual sensors for terrain adaptation of walking machines , 2005, J. Field Robotics.

[37]  Florentin Wörgötter,et al.  Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning , 2016, IEEE Transactions on Cybernetics.

[38]  Liang Zhang,et al.  A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor , 2015, Sensors.

[39]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[40]  V. Jawahar Senthil Kumar,et al.  Energy efficient, obstacle avoidance path planning trajectory for localization in wireless sensor network , 2017, Cluster Computing.

[41]  P. Gonzalez de Santos,et al.  Neural virtual sensors for terrain adaptation of walking machines , 2005 .

[42]  Weria Khaksar,et al.  Multiquery Motion Planning in Uncertain Spaces: Incremental Adaptive Randomized Roadmaps , 2019, Int. J. Appl. Math. Comput. Sci..

[43]  K. Kurien Issac,et al.  Minimum energy force distribution for a walking robot , 2001 .

[44]  Jianhua Wang,et al.  An adaptive locomotion controller for a hexapod robot: CPG, kinematics and force feedback , 2014, Science China Information Sciences.

[45]  Wei Wei,et al.  Gradient-driven parking navigation using a continuous information potential field based on wireless sensor network , 2017, Inf. Sci..

[46]  Darwin G. Caldwell,et al.  Towards versatile legged robots through active impedance control , 2015, Int. J. Robotics Res..

[47]  Mayur Palankar,et al.  A force threshold-based position controller for legged locomotion , 2015, Auton. Robots.

[48]  Hua Deng,et al.  Locomotion Control and Gait Planning of a Novel Hexapod Robot Using Biomimetic Neurons , 2018, IEEE Transactions on Control Systems Technology.

[49]  Hongxu Ma,et al.  Position/Force Control for a Single Leg of a Quadruped Robot in an Operation Space , 2013 .

[50]  Mahmud Iwan Solihin,et al.  A Brief Survey Paper on Multi-Legged Robots , 2015, ICRA 2015.

[51]  J. Dai,et al.  Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds , 1998 .

[52]  Péter Odry,et al.  Model validation of a hexapod walker robot , 2015, Robotica.

[53]  Aude Billard,et al.  Stretchable capacitive tactile skin on humanoid robot fingers — First experiments and results , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[54]  Hua Deng,et al.  Gait and Trajectory Rolling Planning for Hexapod Robot in Complex Environment , 2016 .

[55]  Anish Pandey,et al.  Path planning in uncertain environment by using firefly algorithm , 2018, Defence Technology.

[56]  Randall D. Beer,et al.  Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot , 1996, Robotics Auton. Syst..

[57]  Hui Du,et al.  Fault tolerance properties and motion planning of a six-legged robot with multiple faults , 2016, Robotica.

[58]  Manuel A. Armada,et al.  Reliable, Built-in, High-Accuracy Force Sensing for Legged Robots , 2006, Int. J. Robotics Res..

[59]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[60]  Dominic Vella,et al.  Two leaps forward for robot locomotion , 2015, Science.

[61]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[62]  Javaid Iqbal,et al.  Motion Planning Using an Impact-Based Hybrid Control for Trajectory Generation in Adaptive Walking , 2011 .

[63]  Xuan Shao,et al.  Survey of Quadruped Robots Coping Strategies in Complex Situations , 2019 .

[64]  Feng Zhu,et al.  Optimal Path Planning Satisfying Complex Task Requirement in Uncertain Environment , 2019, Robotica.

[65]  S. Muthukumaran,et al.  Optimal Path Planning for an Autonomous Mobile Robot Using Dragonfly Algorithm , 2019, International Journal of Simulation Modelling.

[66]  Roger D. Quinn,et al.  Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[67]  Feng Gao,et al.  Fault Tolerant Gaits for a Six-Legged Robot With One Locked or Uncontrollable Failure , 2014 .

[68]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts , 2007, Int. J. Robotics Res..

[69]  Agheli Hajiabadi,et al.  Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots , 2013 .

[70]  Vadim Chernyshev,et al.  Development of the walking mover for underwater walking vehicle , 2016 .

[71]  Andrew Y. Ng,et al.  A control architecture for quadruped locomotion over rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[72]  Roger D. Quinn,et al.  Force Sensors in Hexapod Locomotion , 2005, Int. J. Robotics Res..

[73]  Roland Siegwart,et al.  State estimation for legged robots on unstable and slippery terrain , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  Harald van der Werff,et al.  The Influence of Surface Topography on the Weak Ground Shaking in Kathmandu Valley during the 2015 Gorkha Earthquake, Nepal , 2020, Sensors.