Analyse de scènes naturelles par Composantes Indépendantes

De nombreuses etudes montrent que les detecteurs corticaux pourraient resulter de l'application d'un principe de reduction de redondance par independance statistique de leurs activites. L'analyse en Composantes Independantes est utilisee ici pour generer ces detecteurs, puis leurs performances sont analysees en terme de codage et de description pour categoriser des images semantiquement. La propriete d'independance statistique permet notamment de vaincre la « malediction de la dimension » dans un contexte de classification d'images. Un second volet concerne la semantique des images et la perception visuelle. Des sujets humains sont confrontes a des series d'experimentation, captant leur jugement de similarites visuelles, afin de pouvoir identifier les categories semantiques, d'apprecier l'apport de modalites perceptives comme la chrominance versus la luminance, et de mettre en evidence des asymetries perceptives.

[1]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[2]  Aleksandra Mojsilovic,et al.  Capturing image semantics with low-level descriptors , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[3]  Aude Oliva,et al.  Global semantic classification of scenes using power spectrum templates , 1999 .

[4]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[5]  Jeanny Hérault,et al.  Searching for the embedded manifolds in high-dimensional data, problems and unsolved questions , 2002, ESANN.

[6]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[7]  Jang-Kyoo Shin,et al.  Biologically Inspired Saliency Map Model for Bottom-up Visual Attention , 2002, Biologically Motivated Computer Vision.

[8]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[9]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[10]  Simone Santini,et al.  Exploratory Image Databases: Content-Based Retrieval , 2001 .

[11]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[12]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[13]  Nathalie Guyader,et al.  Classification of images: ICA filters vs human perception , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[14]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[15]  R W Prager,et al.  Development of low entropy coding in a recurrent network. , 1996, Network.

[16]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[18]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[20]  K. Obermayer,et al.  Biology and Theory of Early Vision in Mammals , 2000 .

[21]  Horst Bunke,et al.  Recent developments in graph matching , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[22]  A. Chehikian 1 - Algorithmes optimaux pour la génération de pyramides d'images passe-bas et laplaciennes , 1992 .

[23]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[24]  Christian Pellegrini,et al.  High Order Statistics for Image Classification , 2001, Int. J. Neural Syst..

[25]  Andrzej Cichocki,et al.  Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .

[26]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[27]  Eric Moreau,et al.  Self-adaptive source separation. II. Comparison of the direct, feedback, and mixed linear network , 1998, IEEE Trans. Signal Process..

[28]  M. Posner,et al.  Components of visual orienting , 1984 .

[29]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[30]  Song-Chun Zhu,et al.  Statistical Modeling and Conceptualization of Visual Patterns , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Aude Oliva,et al.  Classification of scene photographs from local orientations features , 2000, Pattern Recognit. Lett..

[32]  Erkki Oja,et al.  Independent Component Analysis for Parallel Financial Time Series , 1998, International Conference on Neural Information Processing.

[33]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[34]  Anil K. Jain,et al.  On image classification: city vs. landscape , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[35]  John Carlin,et al.  Bootstrapping adaptive cross pol cancelers for satellite communications , 1982 .

[36]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[37]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[38]  Alberto Sanfeliu,et al.  Graph-based representations and techniques for image processing and image analysis , 2002, Pattern Recognit..

[39]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[40]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[41]  Christian Pellegrini,et al.  Sparse-distributed codes for image categorization , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[42]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[43]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[44]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[45]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[47]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[48]  Joseph J. Atick,et al.  Convergent Algorithm for Sensory Receptive Field Development , 1993, Neural Computation.

[49]  Jean-Louis Lacoume,et al.  Maximum likelihood estimators and Cramer-Rao bounds in source separation , 1996, Signal Process..

[50]  Jeanny Hérault,et al.  Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.

[51]  A. Oliva,et al.  Coarse Blobs or Fine Edges? Evidence That Information Diagnosticity Changes the Perception of Complex Visual Stimuli , 1997, Cognitive Psychology.

[52]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[53]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[54]  D. Donoho NATURE VS . MATH : INTERPRETING INDEPENDENT COMPONENT ANALYSIS IN LIGHT OF COMPUTATIONAL HARMONIC ANALYSIS , 2000 .

[55]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[56]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[57]  M. Basseville Distance measures for signal processing and pattern recognition , 1989 .

[58]  J. Karhunen,et al.  Advances in Nonlinear Blind Source Separation , 2003 .

[59]  D. Ruderman The statistics of natural images , 1994 .

[60]  Jean-Louis Lacoume,et al.  Separation of independent sources from correlated inputs , 1992, IEEE Trans. Signal Process..

[61]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[62]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[63]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[64]  A. G. Flesia,et al.  Can recent innovations in harmonic analysis `explain' key findings in natural image statistics? , 2001, Network.

[65]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[66]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[67]  Michael J. Tarr Is human object recognition better described by geon structural description or by multiple views , 1995 .

[68]  M. Tarr Visual Pattern Recognition , 1998 .

[69]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[70]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[71]  Thomas S. Huang,et al.  Fusion of global and local information for object detection , 2002, Object recognition supported by user interaction for service robots.

[72]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[73]  David Alleysson Le traitement du signal chromatique dans la rétine : Un modèle de base pour la perception humaine des couleurs. , 1999 .

[74]  Minh N. Do,et al.  Image denoising using orthonormal finite ridgelet transform , 2000, SPIE Optics + Photonics.

[75]  T. Ens,et al.  Blind signal separation : statistical principles , 1998 .

[76]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[77]  Florence Tupin Reconnaissance des formes et analyse de scenes en imagerie radar a ouverture synthetique , 1997 .

[78]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[79]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[80]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[81]  Björn Johansson,et al.  A Survey on : Contents Based Search in Image Databases , 2000 .

[82]  Marie Cottrell,et al.  Bootstrapping Self-Organizing Maps to assess the statistical significance of local proximity , 2000, ESANN.

[83]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[84]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[85]  S. Amari,et al.  Approximate maximum likelihood source separation using the natural gradient , 2001, 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471).

[86]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[87]  Christian Jutten,et al.  Separation of Audio-Visual Speech Sources: A New Approach Exploiting the Audio-Visual Coherence of Speech Stimuli , 2002, EURASIP J. Adv. Signal Process..

[88]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[89]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[90]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[91]  M. Lennon,et al.  Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[92]  Nathalie Guyader,et al.  Towards the introduction of human perception in a natural scene classification system , 2002, NNSP.

[93]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[94]  A. G. Flesia,et al.  Digital Ridgelet Transform Based on True Ridge Functions , 2003 .

[95]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[96]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[97]  Erkki Oja,et al.  The nonlinear PCA criterion in blind source separation: Relations with other approaches , 1998, Neurocomputing.

[98]  Dinh Tuan Pham,et al.  BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .

[99]  Erkki Oja,et al.  PicSOM - content-based image retrieval with self-organizing maps , 2000, Pattern Recognit. Lett..

[100]  Shun-ichi Amari,et al.  Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information , 1997, Neural Computation.

[101]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  Ole Winther,et al.  Independent component analysis for understanding multimedia content , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[103]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[104]  Pierre Demartines Analyse de donnees par reseaux de neurones auto-organises , 1994 .

[105]  Erkki Oja,et al.  Independence: a new criterion for the analysis of the electromagnetic fields in the global brain? , 2000, Neural Networks.

[106]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[107]  C. J. Stone,et al.  Logspline Density Estimation for Censored Data , 1992 .

[108]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[109]  C. Jutten,et al.  De la Séparation de Sources à l’Analyse en Composantes Indépendantes , 2005 .

[110]  J. Nadal Non linear neurons in the low noise limit : a factorial code maximizes information transferJean , 1994 .

[111]  G. Nason,et al.  Design and choice of projection indices , 1992 .

[112]  D. Ruderman,et al.  INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .

[113]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[114]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[115]  Jarmo Hurri,et al.  Independent Component Analysis of Image Data , 1997 .

[116]  Bernice E. Rogowitz,et al.  Conference on Human Vision and Electronic Imaging , 1996 .

[117]  I. Johnstone,et al.  Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.

[118]  I. Biederman Recognizing depth-rotated objects: a review of recent research and theory. , 2000, Spatial vision.

[119]  Chengjun Liu,et al.  Independent component analysis of Gabor features for face recognition , 2003, IEEE Trans. Neural Networks.

[120]  Zenon W. Pylyshyn,et al.  Computational processes in human vision : an interdisciplinary perspective , 1988 .

[121]  Anil K. Jain,et al.  Object detection using gabor filters , 1997, Pattern Recognit..

[122]  J. Andrade-Cetto Object Recognition , 2003 .

[123]  Juha Karhunen,et al.  Generalizations of principal component analysis, optimization problems, and neural networks , 1995, Neural Networks.

[124]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[125]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Philippe Tarroux,et al.  Multiresolution codes for scene categorization , 2002, ESANN.

[127]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[128]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[129]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[130]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[131]  Nathalie Guyader,et al.  Représentation espace-fréquence pour la catégorisation d'images , 2001 .

[132]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[133]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[134]  Aapo Hyvärinen,et al.  Estimating Overcomplete Independent Component Bases for Image Windows , 2002, Journal of Mathematical Imaging and Vision.

[135]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[136]  B Willmore,et al.  A Comparison of Natural-Image-Based Models of Simple-Cell Coding , 2000, Perception.

[137]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[138]  I. Biederman,et al.  Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.

[139]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[140]  H. Barlow The exploitation of regularities in the environment by the brain. , 2001, The Behavioral and brain sciences.

[141]  Antonio Torralba,et al.  Depth Estimation from Image Structure , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[142]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[143]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[144]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[145]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[146]  Erkki Oja,et al.  The nonlinear PCA learning rule in independent component analysis , 1997, Neurocomputing.

[147]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[148]  Kari Torkkola,et al.  Blind separation of delayed sources based on information maximization , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[149]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[150]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[151]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[152]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[153]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[154]  M. Basseville Information : entropies, divergences et moyennes , 1996 .

[155]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[156]  Lars Kai Hansen,et al.  Independent Component Analysis in Multimedia Modeling , 2003 .

[157]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[158]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[159]  E. Adelson,et al.  Separating Reflections from Images Using Independent Components Analysis , 1998 .

[160]  E. Rolls High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .

[161]  Anestis Antoniadis,et al.  Representation of images for classification with independent features , 2004, Pattern Recognit. Lett..

[162]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[163]  David L. Donoho,et al.  Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..

[164]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .

[165]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[166]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[167]  Hervé Le Borgne,et al.  Sparse-Dispersed Coding and Images Discrimination with Independent Component Analysis , 2001 .

[168]  Béatrice Pesquet-Popescu,et al.  Ondelettes et applications , 2015, Le traitement du signal et ses applications.

[169]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[170]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[171]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[172]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[173]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[174]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[175]  Antonio Torralba,et al.  Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[176]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[177]  Rosalind W. Picard,et al.  Texture orientation for sorting photos "at a glance" , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[178]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[179]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[180]  Christian Pellegrini,et al.  Image Categorization Using Independent Component Analysis Visual Coding and Redundancy Reduction , 1999 .

[181]  Colin Fyfe,et al.  An extended exploratory projection pursuit network with linear and nonlinear anti-hebbian lateral connections applied to the cocktail party problem , 1997, Neural Networks.

[182]  Lang Tong,et al.  Waveform-preserving blind estimation of multiple independent sources , 1993, IEEE Trans. Signal Process..

[183]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[184]  Patrik O. Hoyer,et al.  Probabilistic models of early vision , 2002 .

[185]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[186]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[187]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[188]  Pierre Comon Quelques développements récents en traitement du signal , 1995 .

[189]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[190]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[191]  M. L. Lambon Ralph,et al.  Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts , 2001, Cognitive neuropsychology.

[192]  R. Hetherington The Perception of the Visual World , 1952 .

[193]  Pierre Comon,et al.  Blind separation of sources, part II: Problems statement , 1991, Signal Process..

[194]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..