Analyse de scènes naturelles par Composantes Indépendantes
暂无分享,去创建一个
[1] RussLL L. Ds Vnlos,et al. SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .
[2] Aleksandra Mojsilovic,et al. Capturing image semantics with low-level descriptors , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[3] Aude Oliva,et al. Global semantic classification of scenes using power spectrum templates , 1999 .
[4] N. Logothetis,et al. Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.
[5] Jeanny Hérault,et al. Searching for the embedded manifolds in high-dimensional data, problems and unsolved questions , 2002, ESANN.
[6] Christian Jutten,et al. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..
[7] Jang-Kyoo Shin,et al. Biologically Inspired Saliency Map Model for Bottom-up Visual Attention , 2002, Biologically Motivated Computer Vision.
[8] J. Cardoso. Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.
[9] J. Henderson,et al. High-level scene perception. , 1999, Annual review of psychology.
[10] Simone Santini,et al. Exploratory Image Databases: Content-Based Retrieval , 2001 .
[11] D. Chakrabarti,et al. A fast fixed - point algorithm for independent component analysis , 1997 .
[12] Lang Tong,et al. Indeterminacy and identifiability of blind identification , 1991 .
[13] Nathalie Guyader,et al. Classification of images: ICA filters vs human perception , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..
[14] Bruno A. Olshausen,et al. PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .
[15] R W Prager,et al. Development of low entropy coding in a recurrent network. , 1996, Network.
[16] Wilson S. Geisler,et al. Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[17] E. Rosch. Cognitive Representations of Semantic Categories. , 1975 .
[18] Daniel A. Pollen,et al. Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.
[19] David J. Field,et al. Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.
[20] K. Obermayer,et al. Biology and Theory of Early Vision in Mammals , 2000 .
[21] Horst Bunke,et al. Recent developments in graph matching , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[22] A. Chehikian. 1 - Algorithmes optimaux pour la génération de pyramides d'images passe-bas et laplaciennes , 1992 .
[23] Edward H. Adelson,et al. The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..
[24] Christian Pellegrini,et al. High Order Statistics for Image Classification , 2001, Int. J. Neural Syst..
[25] Andrzej Cichocki,et al. Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .
[26] J. L. Hodges,et al. The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .
[27] Eric Moreau,et al. Self-adaptive source separation. II. Comparison of the direct, feedback, and mixed linear network , 1998, IEEE Trans. Signal Process..
[28] M. Posner,et al. Components of visual orienting , 1984 .
[29] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[30] Song-Chun Zhu,et al. Statistical Modeling and Conceptualization of Visual Patterns , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[31] Aude Oliva,et al. Classification of scene photographs from local orientations features , 2000, Pattern Recognit. Lett..
[32] Erkki Oja,et al. Independent Component Analysis for Parallel Financial Time Series , 1998, International Conference on Neural Information Processing.
[33] J. H. van Hateren,et al. Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.
[34] Anil K. Jain,et al. On image classification: city vs. landscape , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).
[35] John Carlin,et al. Bootstrapping adaptive cross pol cancelers for satellite communications , 1982 .
[36] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[37] Aapo Hyvärinen,et al. A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.
[38] Alberto Sanfeliu,et al. Graph-based representations and techniques for image processing and image analysis , 2002, Pattern Recognit..
[39] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[40] David J. Field,et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.
[41] Christian Pellegrini,et al. Sparse-distributed codes for image categorization , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).
[42] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[43] David Mumford,et al. Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).
[44] Michael Unser,et al. Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..
[45] J. V. van Hateren,et al. Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[46] Jean-Franois Cardoso. High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.
[47] Pierre Comon. Independent component analysis - a new concept? signal processing , 1994 .
[48] Joseph J. Atick,et al. Convergent Algorithm for Sensory Receptive Field Development , 1993, Neural Computation.
[49] Jean-Louis Lacoume,et al. Maximum likelihood estimators and Cramer-Rao bounds in source separation , 1996, Signal Process..
[50] Jeanny Hérault,et al. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.
[51] A. Oliva,et al. Coarse Blobs or Fine Edges? Evidence That Information Diagnosticity Changes the Perception of Complex Visual Stimuli , 1997, Cognitive Psychology.
[52] M. Potter. Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.
[53] Aapo Hyvärinen,et al. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.
[54] D. Donoho. NATURE VS . MATH : INTERPRETING INDEPENDENT COMPONENT ANALYSIS IN LIGHT OF COMPUTATIONAL HARMONIC ANALYSIS , 2000 .
[55] Joachim M. Buhmann,et al. Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[56] Antonio Torralba,et al. Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.
[57] M. Basseville. Distance measures for signal processing and pattern recognition , 1989 .
[58] J. Karhunen,et al. Advances in Nonlinear Blind Source Separation , 2003 .
[59] D. Ruderman. The statistics of natural images , 1994 .
[60] Jean-Louis Lacoume,et al. Separation of independent sources from correlated inputs , 1992, IEEE Trans. Signal Process..
[61] H Barlow,et al. Redundancy reduction revisited , 2001, Network.
[62] Markus A. Stricker,et al. Similarity of color images , 1995, Electronic Imaging.
[63] Martin Szummer,et al. Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.
[64] A. G. Flesia,et al. Can recent innovations in harmonic analysis `explain' key findings in natural image statistics? , 2001, Network.
[65] H. Barlow. Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .
[66] A. Oliva,et al. From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .
[67] Michael J. Tarr. Is human object recognition better described by geon structural description or by multiple views , 1995 .
[68] M. Tarr. Visual Pattern Recognition , 1998 .
[69] R. L. Valois,et al. The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.
[70] Andrew D. Back,et al. A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..
[71] Thomas S. Huang,et al. Fusion of global and local information for object detection , 2002, Object recognition supported by user interaction for service robots.
[72] J J Hopfield,et al. Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.
[73] David Alleysson. Le traitement du signal chromatique dans la rétine : Un modèle de base pour la perception humaine des couleurs. , 1999 .
[74] Minh N. Do,et al. Image denoising using orthonormal finite ridgelet transform , 2000, SPIE Optics + Photonics.
[75] T. Ens,et al. Blind signal separation : statistical principles , 1998 .
[76] Christian Jutten,et al. Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .
[77] Florence Tupin. Reconnaissance des formes et analyse de scenes en imagerie radar a ouverture synthetique , 1997 .
[78] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[79] Philippe Garat,et al. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..
[80] Tzyy-Ping Jung,et al. Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.
[81] Björn Johansson,et al. A Survey on : Contents Based Search in Image Databases , 2000 .
[82] Marie Cottrell,et al. Bootstrapping Self-Organizing Maps to assess the statistical significance of local proximity , 2000, ESANN.
[83] Jean-Francois Cardoso,et al. Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[84] E. Oja. Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.
[85] S. Amari,et al. Approximate maximum likelihood source separation using the natural gradient , 2001, 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471).
[86] Terrence J. Sejnowski,et al. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..
[87] Christian Jutten,et al. Separation of Audio-Visual Speech Sources: A New Approach Exploiting the Audio-Visual Coherence of Speech Stimuli , 2002, EURASIP J. Adv. Signal Process..
[88] J. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.
[89] J. Cardoso,et al. Blind beamforming for non-gaussian signals , 1993 .
[90] D. Hubel,et al. Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.
[91] M. Lennon,et al. Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).
[92] Nathalie Guyader,et al. Towards the introduction of human perception in a natural scene classification system , 2002, NNSP.
[93] Antonio Torralba,et al. Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[94] A. G. Flesia,et al. Digital Ridgelet Transform Based on True Ridge Functions , 2003 .
[95] Terrence J. Sejnowski,et al. Unsupervised Learning , 2018, Encyclopedia of GIS.
[96] Alexander Dekhtyar,et al. Information Retrieval , 2018, Lecture Notes in Computer Science.
[97] Erkki Oja,et al. The nonlinear PCA criterion in blind source separation: Relations with other approaches , 1998, Neurocomputing.
[98] Dinh Tuan Pham,et al. BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .
[99] Erkki Oja,et al. PicSOM - content-based image retrieval with self-organizing maps , 2000, Pattern Recognit. Lett..
[100] Shun-ichi Amari,et al. Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information , 1997, Neural Computation.
[101] Tai Sing Lee,et al. Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[102] Ole Winther,et al. Independent component analysis for understanding multimedia content , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.
[103] David J. Field,et al. What Is the Goal of Sensory Coding? , 1994, Neural Computation.
[104] Pierre Demartines. Analyse de donnees par reseaux de neurones auto-organises , 1994 .
[105] Erkki Oja,et al. Independence: a new criterion for the analysis of the electromagnetic fields in the global brain? , 2000, Neural Networks.
[106] Andrzej Cichocki,et al. A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.
[107] C. J. Stone,et al. Logspline Density Estimation for Censored Data , 1992 .
[108] Minh N. Do,et al. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..
[109] C. Jutten,et al. De la Séparation de Sources à l’Analyse en Composantes Indépendantes , 2005 .
[110] J. Nadal. Non linear neurons in the low noise limit : a factorial code maximizes information transferJean , 1994 .
[111] G. Nason,et al. Design and choice of projection indices , 1992 .
[112] D. Ruderman,et al. INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .
[113] Aapo Hyvärinen,et al. Survey on Independent Component Analysis , 1999 .
[114] John W. Tukey,et al. A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.
[115] Jarmo Hurri,et al. Independent Component Analysis of Image Data , 1997 .
[116] Bernice E. Rogowitz,et al. Conference on Human Vision and Electronic Imaging , 1996 .
[117] I. Johnstone,et al. Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.
[118] I. Biederman. Recognizing depth-rotated objects: a review of recent research and theory. , 2000, Spatial vision.
[119] Chengjun Liu,et al. Independent component analysis of Gabor features for face recognition , 2003, IEEE Trans. Neural Networks.
[120] Zenon W. Pylyshyn,et al. Computational processes in human vision : an interdisciplinary perspective , 1988 .
[121] Anil K. Jain,et al. Object detection using gabor filters , 1997, Pattern Recognit..
[122] J. Andrade-Cetto. Object Recognition , 2003 .
[123] Juha Karhunen,et al. Generalizations of principal component analysis, optimization problems, and neural networks , 1995, Neural Networks.
[124] Simone Santini,et al. Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[125] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[126] Philippe Tarroux,et al. Multiresolution codes for scene categorization , 2002, ESANN.
[127] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[128] F. Attneave. Some informational aspects of visual perception. , 1954, Psychological review.
[129] P O Hoyer,et al. Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.
[130] T. Coleman,et al. On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .
[131] Nathalie Guyader,et al. Représentation espace-fréquence pour la catégorisation d'images , 2001 .
[132] A. Treisman,et al. A feature-integration theory of attention , 1980, Cognitive Psychology.
[133] Marian Stewart Bartlett,et al. Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[134] Aapo Hyvärinen,et al. Estimating Overcomplete Independent Component Bases for Image Windows , 2002, Journal of Mathematical Imaging and Vision.
[135] Christian Jutten,et al. Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..
[136] B Willmore,et al. A Comparison of Natural-Image-Based Models of Simple-Cell Coding , 2000, Perception.
[137] L. Zadeh. Fuzzy sets as a basis for a theory of possibility , 1999 .
[138] I. Biederman,et al. Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.
[139] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[140] H. Barlow. The exploitation of regularities in the environment by the brain. , 2001, The Behavioral and brain sciences.
[141] Antonio Torralba,et al. Depth Estimation from Image Structure , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[142] Trygve Randen,et al. Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[143] Nathalie Delfosse,et al. Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..
[144] Antonio Torralba,et al. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.
[145] Aapo Hyvärinen,et al. Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.
[146] Erkki Oja,et al. The nonlinear PCA learning rule in independent component analysis , 1997, Neurocomputing.
[147] C. R. Deboor,et al. A practical guide to splines , 1978 .
[148] Kari Torkkola,et al. Blind separation of delayed sources based on information maximization , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.
[149] Ingemar J. Cox,et al. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..
[150] Susan L. Franzel,et al. Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.
[151] Joseph J. Atick,et al. What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.
[152] Anil K. Jain,et al. Image classification for content-based indexing , 2001, IEEE Trans. Image Process..
[153] S Ullman,et al. Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.
[154] M. Basseville. Information : entropies, divergences et moyennes , 1996 .
[155] Juha Karhunen,et al. Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.
[156] Lars Kai Hansen,et al. Independent Component Analysis in Multimedia Modeling , 2003 .
[157] Marcel Worring,et al. Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[158] Fionn Murtagh,et al. Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..
[159] E. Adelson,et al. Separating Reflections from Images Using Independent Components Analysis , 1998 .
[160] E. Rolls. High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .
[161] Anestis Antoniadis,et al. Representation of images for classification with independent features , 2004, Pattern Recognit. Lett..
[162] D. Marr,et al. Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[163] David L. Donoho,et al. Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..
[164] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .
[165] B. S. Manjunath,et al. Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[166] Anil K. Jain,et al. Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..
[167] Hervé Le Borgne,et al. Sparse-Dispersed Coding and Images Discrimination with Independent Component Analysis , 2001 .
[168] Béatrice Pesquet-Popescu,et al. Ondelettes et applications , 2015, Le traitement du signal et ses applications.
[169] Michael J. Swain,et al. Color indexing , 1991, International Journal of Computer Vision.
[170] Gerard Salton,et al. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .
[171] Robin Sibson,et al. What is projection pursuit , 1987 .
[172] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[173] S. Laughlin. A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.
[174] J. Lacoume,et al. Statistiques d'ordre supérieur pour le traitement du signal , 1997 .
[175] Antonio Torralba,et al. Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[176] Dinh Tuan Pham,et al. Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .
[177] Rosalind W. Picard,et al. Texture orientation for sorting photos "at a glance" , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[178] Eero P. Simoncelli,et al. Natural image statistics and neural representation. , 2001, Annual review of neuroscience.
[179] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..
[180] Christian Pellegrini,et al. Image Categorization Using Independent Component Analysis Visual Coding and Redundancy Reduction , 1999 .
[181] Colin Fyfe,et al. An extended exploratory projection pursuit network with linear and nonlinear anti-hebbian lateral connections applied to the cocktail party problem , 1997, Neural Networks.
[182] Lang Tong,et al. Waveform-preserving blind estimation of multiple independent sources , 1993, IEEE Trans. Signal Process..
[183] Alberto Del Bimbo,et al. Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[184] Patrik O. Hoyer,et al. Probabilistic models of early vision , 2002 .
[185] O. Reiser,et al. Principles Of Gestalt Psychology , 1936 .
[186] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[187] Aapo Hyvärinen,et al. New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.
[188] Pierre Comon. Quelques développements récents en traitement du signal , 1995 .
[189] Marvin Minsky,et al. A framework for representing knowledge , 1974 .
[190] Antonio Torralba,et al. Statistics of natural image categories , 2003, Network.
[191] M. L. Lambon Ralph,et al. Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts , 2001, Cognitive neuropsychology.
[192] R. Hetherington. The Perception of the Visual World , 1952 .
[193] Pierre Comon,et al. Blind separation of sources, part II: Problems statement , 1991, Signal Process..
[194] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..