Expanding the Compute-and-Forward Framework: Unequal Powers, Signal Levels, and Multiple Linear Combinations

The compute-and-forward framework permits each receiver in a Gaussian network to directly decode a linear combination of the transmitted messages. The resulting linear combinations can then be employed as an end-to-end communication strategy for relaying, interference alignment, and other applications. Recent efforts have demonstrated the advantages of employing unequal powers at the transmitters and decoding more than one linear combination at each receiver. However, neither of these techniques fit naturally within the original formulation of compute-and-forward. This paper proposes an expanded compute-and-forward framework that incorporates both of these possibilities and permits an intuitive interpretation in terms of signal levels. Within this framework, recent achievability and optimality results are unified and generalized.

[1]  Arun Padakandla,et al.  An Achievable Rate Region for the Three-User Interference Channel Based on Coset Codes , 2014, IEEE Transactions on Information Theory.

[2]  Ram Zamir,et al.  On the Loss of Single-Letter Characterization: The Dirty Multiple Access Channel , 2009, IEEE Transactions on Information Theory.

[3]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[4]  Michael Gastpar,et al.  Maximum Throughput Gain of Compute-and-Forward for Multiple Unicast , 2014, IEEE Communications Letters.

[5]  Michael Gastpar,et al.  Lattice Coding Increases Multicast Rates for Gaussian Multiple-Access Networks , 2007 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Emanuele Viterbo,et al.  Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction , 2012, IEEE Transactions on Wireless Communications.

[8]  T. Guess,et al.  Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[9]  Giuseppe Caire,et al.  Virtual Full-Duplex Relaying With Half-Duplex Relays , 2015, IEEE Transactions on Information Theory.

[10]  Yuval Kochman,et al.  Lattice Coding for Signals and Networks: Side-information problems , 2014 .

[11]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[12]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[13]  Michael Gastpar,et al.  A Joint Typicality Approach to Algebraic Network Information Theory , 2016, ArXiv.

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[16]  Syed A. Jafar,et al.  Interference Alignment and the Degrees of Freedom for the 3 User Interference Channel , 2007 .

[17]  Amir K. Khandani,et al.  Real Interference Alignment: Exploiting the Potential of Single Antenna Systems , 2009, IEEE Transactions on Information Theory.

[18]  Uri Erez,et al.  Successive integer-forcing and its sum-rate optimality , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  David Tse,et al.  Interference neutralization in distributed lossy source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[20]  Yu-Chih Huang,et al.  Lattices Over Eisenstein Integers for Compute-and-Forward , 2014, IEEE Transactions on Information Theory.

[21]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[22]  Hiroshi Sato,et al.  The capacity of the Gaussian interference channel under strong interference , 1981, IEEE Trans. Inf. Theory.

[23]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-way Relay Channel to within 1/2 Bit , 2009, ArXiv.

[24]  Lele Wang,et al.  Sliding-window superposition coding for interference networks , 2014, 2014 IEEE International Symposium on Information Theory.

[25]  Michael Gastpar,et al.  A joint typicality approach to compute-forward , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[26]  Michael Gastpar,et al.  Cooperative strategies and capacity theorems for relay networks , 2005, IEEE Transactions on Information Theory.

[27]  Giuseppe Caire,et al.  Structured Lattice Codes for 2 \times 2 \times 2 MIMO Interference Channel , 2013, ArXiv.

[28]  Natasha Devroye,et al.  Lattice Codes for the Gaussian Relay Channel: Decode-and-Forward and Compress-and-Forward , 2011, IEEE Transactions on Information Theory.

[29]  Michael Gastpar,et al.  Compute-and-forward for discrete memoryless networks , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[30]  Uri Erez,et al.  On the Robustness of Lattice Interference Alignment , 2013, IEEE Transactions on Information Theory.

[31]  Bobak Nazer Successive compute-and-forward , 2012 .

[32]  Yu-Chih Huang,et al.  Multistage compute-and-forward with multilevel lattice codes based on product constructions , 2014, 2014 IEEE International Symposium on Information Theory.

[33]  Yihua Tan,et al.  Asymmetric Compute-and-Forward: Going beyond one hop , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[35]  Giuseppe Caire,et al.  Structured lattice codes for 2×2×2 MIMO interference channel , 2013, 2013 IEEE International Symposium on Information Theory.

[36]  Giuseppe Caire,et al.  On Interference Networks Over Finite Fields , 2013, IEEE Transactions on Information Theory.

[37]  Cong Ling,et al.  The flatness factor in lattice network coding: design criterion and decoding algorithm , 2012 .

[38]  Giuseppe Caire,et al.  Asymmetric compute-and-forward , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[39]  Tchébichef,et al.  Mémoire sur les nombres premiers. , 1852 .

[40]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[41]  Sae-Young Chung,et al.  Noisy Network Coding , 2010, IEEE Transactions on Information Theory.

[42]  Shlomo Shamai,et al.  Structured superposition for backhaul constrained cellular uplink , 2009, 2009 IEEE International Symposium on Information Theory.

[43]  Aylin Yener,et al.  Providing Secrecy With Structured Codes: Tools and Applications to Two-User Gaussian Channels , 2009, ArXiv.

[44]  Ilan Shomorony,et al.  Degrees of Freedom of Two-Hop Wireless Networks: Everyone Gets the Entire Cake , 2012, IEEE Transactions on Information Theory.

[45]  Patrick Mitran,et al.  On Non-Binary Constellations for Channel-Coded Physical-Layer Network Coding , 2013, IEEE Transactions on Wireless Communications.

[46]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[47]  Sae-Young Chung,et al.  Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.

[48]  Giuseppe Caire,et al.  Integer-forcing interference alignment , 2013, 2013 IEEE International Symposium on Information Theory.

[49]  KrithivasanD.,et al.  Distributed Source Coding Using Abelian Group Codes , 2011 .

[50]  S. Lang,et al.  Introduction to Diophantine Approximations , 1995 .

[51]  Aylin Yener,et al.  Providing Secrecy With Structured Codes: Two-User Gaussian Channels , 2014, IEEE Transactions on Information Theory.

[52]  Henry D. Pfister,et al.  Spatially-coupled low density lattices based on construction a with applications to compute-and-forward , 2013, 2013 IEEE Information Theory Workshop (ITW).

[53]  Yitzhak Katznelson,et al.  A (terse) introduction to linear algebra , 2007 .

[54]  Wenbo He,et al.  Integer-forcing interference alignment: Iterative optimization via aligned lattice reduction , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[55]  Amir K. Khandani,et al.  Communication Over MIMO X Channels: Interference Alignment, Decomposition, and Performance Analysis , 2008, IEEE Transactions on Information Theory.

[56]  Shashank Vatedka,et al.  Secure Compute-and-Forward in a Bidirectional Relay , 2012, IEEE Transactions on Information Theory.

[57]  Urs Niesen,et al.  Computation Alignment: Capacity Approximation Without Noise Accumulation , 2011, IEEE Transactions on Information Theory.

[58]  Steven D. Galbraith,et al.  Mathematics of Public Key Cryptography: Lattice basis reduction , 2012 .

[59]  Michael Gastpar,et al.  Reliable Physical Layer Network Coding , 2011, Proceedings of the IEEE.

[60]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[61]  Shlomo Shamai,et al.  Uplink-downlink duality for integer-forcing , 2014, 2014 IEEE International Symposium on Information Theory.

[62]  Michael Gastpar,et al.  Computing over Multiple-Access Channels with Connections to Wireless Network Coding , 2006, 2006 IEEE International Symposium on Information Theory.

[63]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-Way Relay Channel to Within ${1\over 2}$ Bit , 2009, IEEE Transactions on Information Theory.

[64]  Zixiang Xiong,et al.  Distributed compression of linear functions: Partial sum-rate tightness and gap to optimal sum-rate , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[65]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[66]  Giuseppe Caire,et al.  Reverse compute and forward: A low-complexity architecture for downlink distributed antenna systems , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[67]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[68]  Urs Niesen,et al.  Interference alignment: From degrees-of-freedom to constant-gap capacity approximations , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[69]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[70]  Aaron B. Wagner On Distributed Compression of Linear Functions , 2011, IEEE Transactions on Information Theory.

[71]  Michael Gastpar,et al.  Integer-forcing linear receivers , 2010, 2010 IEEE International Symposium on Information Theory.

[72]  Abhay Parekh,et al.  The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels , 2008, IEEE Transactions on Information Theory.

[73]  T. Ho,et al.  On Linear Network Coding , 2010 .

[74]  S. Sandeep Pradhan,et al.  Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function , 2007, IEEE Transactions on Information Theory.

[75]  Giuseppe Caire,et al.  Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems , 2012, IEEE Transactions on Information Theory.

[76]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[77]  Sae-Young Chung,et al.  Nested Lattice Codes for Gaussian Relay Networks With Interference , 2011, IEEE Transactions on Information Theory.

[78]  Uri Erez,et al.  Lattice Strategies for the Dirty Multiple Access Channel , 2007, IEEE Transactions on Information Theory.

[79]  Yu-Chih Huang,et al.  Lattices Over Eisenstein Integers for Compute-and-Forward , 2015, IEEE Trans. Inf. Theory.

[80]  Natasha Devroye,et al.  Relays that cooperate to compute , 2012, 2012 International Symposium on Wireless Communication Systems (ISWCS).

[81]  R. Zamir,et al.  Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory , 2014 .

[82]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[83]  Urs Niesen,et al.  The Degrees of Freedom of Compute-and-Forward , 2011, IEEE Transactions on Information Theory.

[84]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[85]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2012, IEEE Transactions on Information Theory.

[86]  I-Hsiang Wang Approximate Capacity of the Dirty Multiple-Access Channel With Partial State Information at the Encoders , 2012, IEEE Transactions on Information Theory.

[87]  Alexander Sprintson,et al.  Joint Physical Layer Coding and Network Coding for Bidirectional Relaying , 2008, IEEE Transactions on Information Theory.

[88]  Petar Popovski,et al.  The Anti-Packets Can Increase the Achievable Throughput of a Wireless Multi-Hop Network , 2006, 2006 IEEE International Conference on Communications.

[89]  L. Goddard Information Theory , 1962, Nature.

[90]  J. Sylvester XXXVII. On the relation between the minor determinants of linearly equivalent quadratic functions , 1851 .

[91]  Uri Erez,et al.  A Simple Proof for the Existence of “Good” Pairs of Nested Lattices , 2012, IEEE Transactions on Information Theory.

[92]  Amir K. Khandani,et al.  On the secure DoF of the single-antenna MAC , 2010, 2010 IEEE International Symposium on Information Theory.

[93]  Rüdiger L. Urbanke,et al.  A rate-splitting approach to the Gaussian multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[94]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[95]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.

[96]  S. Sandeep Pradhan,et al.  Distributed Source Coding Using Abelian Group Codes: A New Achievable Rate-Distortion Region , 2011, IEEE Transactions on Information Theory.

[97]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[98]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[99]  Soung Chang Liew,et al.  Hot topic: physical-layer network coding , 2006, MobiCom '06.

[100]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[101]  Michael Gastpar,et al.  Multiple Access via Compute-and-Forward , 2014, ArXiv.

[102]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[103]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[104]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[105]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[106]  Giuseppe Caire,et al.  Full-Duplex Relaying with Half-Duplex Relays , 2013, ArXiv.

[107]  Bobak Nazer,et al.  The symmetric ergodic capacity of phase-fading interference channels to within a constant gap: 3 users in the strong and very strong regimes , 2013, 2013 IEEE International Symposium on Information Theory.

[108]  Uri Erez,et al.  Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap , 2013, 2013 IEEE Information Theory Workshop (ITW).

[109]  Steven Galbraith Lattice Basis Reduction , 2011, Encyclopedia of Cryptography and Security.

[110]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2014, IEEE Trans. Inf. Theory.

[111]  NamWooseok,et al.  Capacity of the Gaussian two-way relay channel to within 1/2 bit , 2010 .

[112]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[113]  Frank R. Kschischang,et al.  An Algebraic Approach to Physical-Layer Network Coding , 2010, IEEE Transactions on Information Theory.