Distance scales, embeddings, and metrics of negative type ⁄ (preliminary draft)

We introduce a new number of new techniques for the construction of low-distortion embeddings of a flnite metric space. These include a generic Gluing Lemma which avoids the overhead typically incurred from the na˜‡ve concatenation of maps for difierent scales of a space. We also give a signiflcantly improved and quantitatively optimal version of the main structural theorem of Arora, Rao, and Vazirani on separated sets in metrics of negative type. The latter result ofiers a simple hyperplane rounding algorithm for the computation of an O( p logn)-approximation to the Sparsest Cut problem with uniform demands, and has a number of other applications to embeddings and approximation algorithms.

[1]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[2]  G. Pisier,et al.  Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .

[3]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[4]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[5]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[7]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[8]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[9]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[10]  Cuts, trees and l/sub 1/-embeddings of graphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[12]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[13]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[14]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[15]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[16]  Ilan Newman,et al.  A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2002, SCG '02.

[17]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[18]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[19]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[20]  A. Naor,et al.  Euclidean quotients of finite metric spaces , 2004, math/0406349.

[21]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[24]  Amit Agarwal,et al.  O(√log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems , 2005, STOC '05.

[25]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[26]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[27]  Mohammad Taghi Hajiaghayi,et al.  L22 Spreading Metrics for Vertex Ordering Problems , 2006, SODA.

[28]  Assaf Naor,et al.  Metric cotype , 2005, SODA '06.