Static pose reconstruction with an instrumented bouldering wall

This paper describes the design and construction of an instrumented bouldering wall, and a technique for estimating poses by optimizing an objective function involving contact forces. We describe the design and calibration of the wall, which can capture the contact forces and torques during climbing while motion capture (MoCap) records the climber pose, and present a solution for identifying static poses for a given set of holds and forces. We show results of our calibration process and static poses estimated for different measured forces. To estimate poses from forces, we use optimization and start with an inexpensive objective to guide the solver toward the optimal solution. When good candidates are encountered, the full objective function is evaluated with a physics-based simulation to determine physical plausibility while meeting additional constraints. Comparison between our reconstructed poses and MoCap show that our objective function is a good model for human posture.

[1]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[2]  Joaquim B. Cavalcante Neto,et al.  Using natural vibrations to guide control for locomotion , 2012, I3D '12.

[3]  Firoz Alam,et al.  The Impact of Technology on Sport II , 2007 .

[4]  Takeo Igarashi,et al.  Interactive climbing route design using a simulated virtual climber , 2011, SA '11.

[5]  Franz Konstantin Fuss,et al.  Instrumented Climbing Holds and Dynamics of Sport Climbing , 2006 .

[6]  J. P. Blanchi,et al.  Mesure de la force maximale volontaire à partir d'une posture quadrupodale en escalade : influence du niveau d'expertise , 1992 .

[7]  Dinesh K. Pai,et al.  FootSee: an interactive animation system , 2003, SCA '03.

[8]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[9]  Dinesh K. Pai,et al.  Interaction capture and synthesis , 2005, SIGGRAPH 2005.

[10]  David J. Fleet,et al.  Estimating contact dynamics , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  F. Fuss,et al.  The Fully Instrumented Climbing Wall: Performance Analysis, Route Grading and Vector Diagrams - A Preliminary Study. , 2008 .

[12]  M. Testa,et al.  Effects of the type of holds and movement amplitude on postural control associated with a climbing task. , 1999, Gait & posture.

[13]  Franck Quaine,et al.  Effect of a leg movement on the organisation of the forces at the holds in a climbing position 3-D kinetic analysis , 1997 .

[14]  Hans-Peter Seidel,et al.  Markerless motion capture of man-machine interaction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[16]  P. Rougier,et al.  Conception d'un système pour étudier la relation posturo-cinétique dans un plan vertical : application sur une population de grimpeurs , 1991 .

[17]  Sehoon Ha,et al.  Human motion reconstruction from force sensors , 2011, SCA '11.

[18]  Luc Martin,et al.  The Effect of Body Position and Number of Supports on Wall Reaction Forces in Rock Climbing , 1997 .

[19]  Dinesh K. Pai,et al.  Grasp Recognition and Manipulation with the Tango , 2006, ISER.