Negative Binomial Process Count and Mixture Modeling
暂无分享,去创建一个
[1] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[2] D. Blei,et al. The Discrete Innite Logistic Normal Distribution , 2011, 1103.4789.
[3] Christopher M. Bishop,et al. Variational Relevance Vector Machines , 2000, UAI.
[4] Chong Wang,et al. The IBP Compound Dirichlet Process and its Application to Focused Topic Modeling , 2010, ICML.
[5] J. Griffin,et al. Posterior Simulation of Normalized Random Measure Mixtures , 2011 .
[6] Sudhir Paul,et al. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. , 2005, Biometrics.
[7] G. Roberts,et al. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.
[8] Lawrence Carin,et al. Nonparametric factor analysis with beta process priors , 2009, ICML '09.
[9] Chong Wang,et al. Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.
[10] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[11] Lawrence Carin,et al. Augment-and-Conquer Negative Binomial Processes , 2012, NIPS.
[12] Guillermo Sapiro,et al. On the Integration of Topic Modeling and Dictionary Learning , 2011, ICML.
[13] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[14] H. Ishwaran,et al. Exact and approximate sum representations for the Dirichlet process , 2002 .
[15] Quenouille Mh,et al. A relation between the logarithmic, Poisson, and negative binomial series. , 1949 .
[16] Peter S. Fader,et al. Bayesian Inference for the Negative Binomial Distribution via Polynomial Expansions , 2002 .
[17] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[18] M. H. Quenouille,et al. A relation between the logarithmic, Poisson, and negative binomial series. , 1949, Biometrics.
[19] Aleks Jakulin,et al. Discrete Component Analysis , 2005, SLSFS.
[20] J. Lloyd-Smith. Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases , 2007, PloS one.
[21] Marko Grobelnik,et al. Subspace, Latent Structure and Feature Selection techniques , 2006 .
[22] Michael I. Jordan,et al. Bayesian Nonparametric Latent Feature Models , 2011 .
[23] H. Damasio,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .
[24] David B. Dunson,et al. Lognormal and Gamma Mixed Negative Binomial Regression , 2012, ICML.
[25] Michael I. Jordan. Hierarchical Models , Nested Models and Completely Random Measures , 2010 .
[26] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[27] David B. Dunson,et al. Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.
[28] Yongdai Kim. NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .
[29] W. Piegorsch. Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.
[30] Zoubin Ghahramani,et al. Infinite Sparse Factor Analysis and Infinite Independent Components Analysis , 2007, ICA.
[31] Yee Whye Teh,et al. On Smoothing and Inference for Topic Models , 2009, UAI.
[32] J. Kingman,et al. Completely random measures. , 1967 .
[33] N. Shephard,et al. Integer-valued Lévy processes and low latency financial econometrics , 2012 .
[34] Pravin K. Trivedi,et al. Regression Analysis of Count Data , 1998 .
[35] T. Griffiths,et al. Bayesian nonparametric latent feature models , 2007 .
[36] Ali Taylan Cemgil,et al. Bayesian Inference for Nonnegative Matrix Factorisation Models , 2009, Comput. Intell. Neurosci..
[37] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[38] H. Ishwaran,et al. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .
[39] Michalis K. Titsias,et al. The Infinite Gamma-Poisson Feature Model , 2007, NIPS.
[40] Michael I. Jordan,et al. Developing a tempered HDP-HMM for Systems with State Persistence , 2007 .
[41] Karl J. Friston,et al. Hierarchical Models , 2003 .
[42] David B. Dunson,et al. Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.
[43] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[44] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[45] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[46] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[47] D. Aldous. Exchangeability and related topics , 1985 .
[48] M. Clyde,et al. Stochastic expansions using continuous dictionaries: Lévy adaptive regression kernels , 2011, 1112.3149.
[49] J. Lawless. Negative binomial and mixed Poisson regression , 1987 .
[50] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[51] M. R. Leadbetter. Poisson Processes , 2011, International Encyclopedia of Statistical Science.
[52] J. H. Matis,et al. Small Sample Comparison of Different Estimators of Negative Binomial Parameters , 1977 .
[53] David B. Dunson,et al. Dependent Hierarchical Beta Process for Image Interpolation and Denoising , 2011, AISTATS.
[54] D. Dunson,et al. Bayesian latent variable models for mixed discrete outcomes. , 2005, Biostatistics.
[55] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[56] Chong Wang,et al. The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling , 2011, AISTATS.
[57] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[58] J. L. Folks,et al. Multistage estimation compared with fixed-sample-size estimation of the negative binomial parameter k , 1984 .
[59] Guillermo Sapiro,et al. Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.
[60] E. Çinlar. Probability and Stochastics , 2011 .
[61] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[62] H. Friedl. Econometric Analysis of Count Data , 2002 .
[63] Ruslan Salakhutdinov,et al. Evaluation methods for topic models , 2009, ICML '09.
[64] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[65] Michael I. Jordan,et al. Nonparametric bayesian models for machine learning , 2008 .
[66] Thomas Hofmann,et al. Probabilistic Latent Semantic Analysis , 1999, UAI.
[67] Ramsés H. Mena,et al. Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .
[68] John F. Canny,et al. GaP: a factor model for discrete data , 2004, SIGIR '04.
[69] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[70] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[71] P. Damlen,et al. Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .
[72] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[73] L. Carin,et al. Nonparametric Bayesian matrix completion , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.
[74] M. Robinson,et al. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.
[75] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[76] Gordon E. Willmot,et al. A mixed poisson–inverse‐gaussian regression model , 1989 .
[77] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[78] Emin Orhan. Dirichlet Processes , 2012 .
[79] M. Greenwood,et al. An Inquiry into the Nature of Frequency Distributions Representative of Multiple Happenings with Particular Reference to the Occurrence of Multiple Attacks of Disease or of Repeated Accidents , 1920 .
[80] Nancy Bertin,et al. Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis , 2009, Neural Computation.
[81] C. I. Bliss,et al. FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO BIOLOGICAL DATA AND NOTE ON THE EFFICIENT FITTING OF THE NEGATIVE BINOMIAL , 1953 .
[82] J. T. Wulu,et al. Regression analysis of count data , 2002 .
[83] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.
[84] J. Davis. Univariate Discrete Distributions , 2006 .
[85] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[86] A. W. Kemp,et al. Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .
[87] Michael I. Jordan,et al. Combinatorial Clustering and the Beta Negative Binomial Process , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[88] R. Wolpert,et al. Poisson/gamma random field models for spatial statistics , 1998 .