Voronoi Diagrams

1 Partially supported by the Deutsche Forschungsgemeinschaft, grant Kl 655 2-2.

[1]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[2]  Kenneth J. Supowit,et al.  The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Narendra Ahuja,et al.  Dot Pattern Processing Using Voronoi Neighborhoods , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[6]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[7]  David M. Mount,et al.  Globally-Equiangular triangulations of co-circular points in 0(n log n) time , 1988, SCG '88.

[8]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[9]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[10]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[11]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[12]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[13]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[16]  Micha Sharir,et al.  On the Zone Theorem for Hyperplane Arrangements , 1991, SIAM J. Comput..

[17]  Jirí Matousek,et al.  Piecewise linear paths among convex obstacles , 1993, STOC.

[18]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[19]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing kth-Order Voronoi Diagrams , 1985, IEEE Transactions on Computers.

[20]  Derick Wood,et al.  Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.

[21]  G. Toussaint,et al.  On Geometric Algorithms that use the Furthest-Point Voronoi Diagram , 1985 .

[22]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[23]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[24]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1995, J. Univers. Comput. Sci..

[25]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[26]  Tiow Seng Tan,et al.  A quadratic time algorithm for the minmax length triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[27]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Olivier Devillers Randomization yields simple O(n log* n) algorithms for difficult Omega(n) problems , 1992, Int. J. Comput. Geom. Appl..

[29]  D. Meek,et al.  Empty-shape triangulation algorithms , 1994 .

[30]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[31]  Georges Voronoi,et al.  Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs. , 1909 .

[32]  S. Sloan A fast algorithm for constructing Delaunay triangulations in the plane , 1987 .

[33]  D. A. Field,et al.  Implementing Watson's algorithm in three dimensions , 1986, SCG '86.

[34]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[35]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[36]  Jean-Daniel Boissonnat,et al.  On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..

[37]  Franz Aurenhammer,et al.  Geometric Relations Among Voronoi Diagrams , 1987, STACS.

[38]  Jorge Urrutia,et al.  Voronoi diagrams and containment of families of convex sets on the plane , 1995, SCG '95.

[39]  Matthew Dickerson,et al.  Simple algorithms for enumerating interpoint distances and finding $k$ nearest neighbors , 1992, Int. J. Comput. Geom. Appl..

[40]  Raimund Seidel,et al.  On the number of faces in higher-dimensional Voronoi diagrams , 1987, SCG '87.

[41]  L. Chew Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .

[42]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .

[43]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[44]  Alok Aggarwal,et al.  Solving query-retrieval problems by compacting Voronoi diagrams , 1990, STOC '90.

[45]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[46]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[47]  Gautam Das,et al.  WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .

[48]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[49]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[50]  Kurt Mehlhorn,et al.  How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.

[51]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes ind dimension , 1990, Comb..

[52]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[53]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[54]  Michiel H. M. Smid,et al.  Simple Randomized Algorithms for Closest Pair Problems , 1995, Nord. J. Comput..

[55]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[56]  Franz Aurenhammer A New Duality Result Concerning Voronoi Diagrams , 1986, ICALP.

[57]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[58]  Michael Ian Shamos,et al.  Divide-and-conquer in multidimensional space , 1976, STOC '76.

[59]  Micha Sharir,et al.  Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..

[60]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[61]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[62]  Franz Aurenhammer,et al.  A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1991, SCG '91.

[63]  F. Aurenhammer Linear combinations from power domains , 1988 .

[64]  D. Chand,et al.  On Convex Polyhedra , 1970 .

[65]  B. Joe,et al.  GEOMPACK — a software package for the generation of meshes using geometric algorithms☆ , 1991 .

[66]  Ketan Mulmuley,et al.  Randomized Algorithms in Computational Geometry , 2000, Handbook of Computational Geometry.

[67]  Tetsuo Asano,et al.  Clustering algorithms based on minimum and maximum spanning trees , 1988, SCG '88.

[68]  Frank K. Hwang,et al.  An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.

[69]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[70]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[71]  Christos Levcopoulos,et al.  Quasi-greedy triangulations approximating the minimum weight triangulation , 1996, SODA '96.

[72]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[73]  Herbert Edelsbrunner,et al.  An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..

[74]  J. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .

[75]  Ketan Mulmuley,et al.  On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..

[76]  Thomas Roos,et al.  Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.

[77]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[78]  David P. Dobkin,et al.  Delaunay graphs are almost as good as complete graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[79]  David Hartvigsen,et al.  Recognizing Voronoi Diagrams with Linear Programming , 1992, INFORMS J. Comput..

[80]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[81]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[82]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[83]  Oleg R. Musin Properties of the Delaunay triangulation , 1997, SCG '97.

[84]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[85]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[86]  Franz Aurenhammer,et al.  Triangulations intersect nicely , 1996, Discret. Comput. Geom..

[87]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[88]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[89]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[90]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[91]  Yin-Feng Xu,et al.  Approaching the largest β-skeleton within a minimum weight triangulation , 1996, SCG '96.

[92]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[93]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[94]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[95]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[96]  Leonidas J. Guibas,et al.  The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..

[97]  Klaus H. Hinrichs,et al.  Plane-Sweep Solves the Closest Pair Problem Elegantly , 1988, Inf. Process. Lett..

[98]  Bernhard Geiger,et al.  3D modeling using the Delaunay triangulation , 1995, SCG '95.

[99]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..

[100]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[101]  Hans-Christoph Im Hof,et al.  Dirichlet regions in manifolds without conjugate points , 1979 .

[102]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[103]  P. L. Powar,et al.  Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..

[104]  Tiow-Seng Tan,et al.  Optimal two-dimensional triangulations , 1992 .

[105]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[106]  Timothy Lambert,et al.  The Delaunay Triangulation Maximizes the Mean Inradius , 1994, CCCG.

[107]  Franz Aurenhammer,et al.  Improved Algorithms for Discs and Balls Using Power Diagrams , 1988, J. Algorithms.

[108]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[109]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[110]  J. Mark Keil,et al.  Computing a Subgraph of the Minimum Weight Triangulation , 1994, Comput. Geom..

[111]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..

[112]  Richard C. T. Lee,et al.  Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.

[113]  Andrzej Lingas,et al.  Fast Skeleton Construction , 1995, ESA.

[114]  Ngoc-Minh Lê,et al.  On Voronoi Diagrams in the L_p-Metric in Higher Dimensions , 1994, STACS.

[115]  D. T. Lee,et al.  Efficient Computation of the Geodesic Voronoi Diagram of Points in a Simple Polygon (Extended Abstract) , 1995, ESA.

[116]  David G. Kirkpatrick,et al.  Tentative prune-and-search for computing Voronoi vertices , 1993, SCG '93.

[117]  Stefan Meiser,et al.  Zur Konstruktion abstrakter Voronoidiagramme , 1993 .

[118]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[119]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[120]  Sven Skyum,et al.  A Sweepline Algorithm for Generalized Delaunay Triangulations , 1991 .

[121]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[122]  Andrzej Lingas,et al.  Manhattonian proximity in a simple polygon , 1992, SCG '92.

[123]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[124]  Tomás Recio,et al.  On the topological shape of planar Voronoi diagrams , 1993, SCG '93.

[125]  Boris Aronov,et al.  A lower bound on Voronoi diagram complexity , 2002, Inf. Process. Lett..

[126]  Pravin M. Vaidya,et al.  Minimum Spanning Trees in k-Dimensional Space , 1988, SIAM J. Comput..

[127]  Andrzej Lingas,et al.  A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.

[128]  Rolf Klein,et al.  A Sweepcircle Algorithm for Voronoi Diagrams , 1987, WG.

[129]  Siu-Wing Cheng,et al.  Expected case analysis of {221}-skeletons with applications to the construction of minimum-weight triangulations , 1995 .

[130]  Arne Maus,et al.  Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.

[131]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[132]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[133]  D. Kirkpatrick,et al.  A Framework for Computational Morphology , 1985 .

[134]  Jean-Daniel Boissonnat,et al.  Output-sensitive construction of the $3$-d Delaunay triangulation of constrained sets of points , 1991 .

[135]  Paul Chew,et al.  There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..

[136]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[137]  Frank Dehne,et al.  A computational geometry approach to clustering problems , 1985, SCG '85.

[138]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[139]  Endre Boros,et al.  On clustering problems with connected optima in euclidean spaces , 1989, Discret. Math..

[140]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[141]  Thomas R,et al.  Voronoi Diagrams of Line Segments Made Easy * ( Extended , 1999 .

[142]  Michael B. Dillencourt,et al.  A Non-Hamiltonian, Nondegenerate Delaunay Triangulation , 1987, Inf. Process. Lett..

[143]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[144]  Tohru Ogawa,et al.  A new algorithm for three-dimensional voronoi tessellation , 1983 .

[145]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1985, SCG '85.

[146]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[147]  John F. Canny,et al.  A Voronoi method for the piano-movers problem , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[148]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[149]  Christos Levcopoulos,et al.  The First Subquadratic Algorithm for Complete Linkage Clustering , 1995, ISAAC.

[150]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[151]  C. Gibson REAL ALGEBRAIC AND SEMI‐ALGEBRAIC SETS (Actualités Mathématiques 348) , 1991 .

[152]  Franz Aurenhammer,et al.  Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.

[153]  Ethan D. Bolker,et al.  Recognizing Dirichlet tessellations , 1985 .

[154]  M. Smid Maintaining the minimal distance of a point set in less than linear time , 1990 .

[155]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[156]  Pravin M. Vaidya,et al.  A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..

[157]  Ketan Mulmuley,et al.  Output sensitive construction of levels and Voronoi diagrams in Rd of order 1 to k , 1990, STOC '90.

[158]  David G. Kirkpatrick,et al.  A Note on Delaunay and Optimal Triangulations , 1980, Inf. Process. Lett..

[159]  Nancy M. Amato,et al.  On computing Voronoi diagrams by divide-prune-and-conquer , 1996, SCG '96.

[160]  Alok Aggarwal,et al.  Finding k Points with Minimum Diameter and Related Problems , 1991, J. Algorithms.

[161]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[162]  Mariette Yvinec,et al.  Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1995, SCG '95.

[163]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[164]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[165]  Rolf Klein,et al.  Convex distance functions in 3-space are different , 1993, SCG '93.

[166]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[167]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[168]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[169]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[170]  Franz Aurenhammer,et al.  Straight skeletons for general polygonal figures , 1995 .

[171]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.

[172]  Atsuo Suzuki,et al.  APPROXIMATION OF A TESSELLATION OF THE PLANE BY A VORONOI DIAGRAM , 1986 .

[173]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[174]  Sanguthevar Rajasekaran,et al.  Optimal parallel randomized algorithms for the Voronoi diagram of line segments in the plane and related problems , 1994, SCG '94.

[175]  Jirí Matousek,et al.  Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.

[176]  David Eppstein,et al.  Algorithms for Proximity Problems in Higher Dimensions , 1995, Comput. Geom..

[177]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[178]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[179]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[180]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[181]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[182]  Chak-Kuen Wong,et al.  Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..

[183]  Michael B. Dillencourt,et al.  Toughness and Delaunay triangulations , 1987, SCG '87.

[184]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.

[185]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[186]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[187]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[188]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[189]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[190]  R. Prim Shortest connection networks and some generalizations , 1957 .

[191]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[192]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[193]  Micha Sharir,et al.  Voronoi diagrams of lines in 3-space under polyhedral convex distance functions , 1995, SODA '95.

[194]  Michael B. Dillencourt,et al.  Finding Hamiltonian Cycles in Delaunay Triangulations Is NP-complete , 1996, Discret. Appl. Math..

[195]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[196]  Timothy M. Chan,et al.  Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three , 1995, SODA '95.

[197]  Ngoc-Minh Lê,et al.  Randomized Incremental Construction of Simple Abstract Voronoi Diagrams in 3-space , 1997, Comput. Geom..

[198]  Hartmut Noltemeier,et al.  On Separable Clusterings , 1989, J. Algorithms.

[199]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[200]  Jean-Daniel Boissonnat,et al.  Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation , 1993, Electronic Imaging.

[201]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[202]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[203]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[204]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[205]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[206]  Cao An Wang,et al.  Efficiently updating constrained Delaunay triangulations , 1993, BIT.

[207]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[208]  Andrzej Lingas,et al.  A Linear-time Construction of the Relative Neighborhood Graph From the Delaunay Triangulation , 1994, Comput. Geom..

[209]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[210]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[211]  Boris Aronov On the geodesic Voronoi diagram of point sites in a simple polygon , 1987, SCG '87.

[212]  Chee-Keng Yap,et al.  Algorithmic and geometric aspects of robotics , 1987 .

[213]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[214]  M. Inaba Application of weighted Voronoi diagrams and randomization to variance-based k-clustering , 1994, SoCG 1994.

[215]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[216]  Lenhart K. Schubert,et al.  An optimal algorithm for constructing the Delaunay triangulation of a set of line segments , 1987, SCG '87.

[217]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[218]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[219]  Gerhard J. Woeginger,et al.  Geometric Clusterings , 1991, J. Algorithms.

[220]  P. Strevens Iii , 1985 .

[221]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[222]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[223]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[224]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[225]  Narendra Ahuja,et al.  DOT PATTERN PROCESSING USING VORONOI POLYGONS AS NEIGHBORHOODS. , 1980 .

[226]  James A. McHugh,et al.  Algorithmic Graph Theory , 1986 .

[227]  Guy E. Blelloch,et al.  Developing a practical projection-based parallel Delaunay algorithm , 1996, SCG '96.

[228]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.