Voronoi Diagrams
暂无分享,去创建一个
[1] V. Klee. On the complexity ofd- dimensional Voronoi diagrams , 1979 .
[2] Kenneth J. Supowit,et al. The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Narendra Ahuja,et al. Dot Pattern Processing Using Voronoi Neighborhoods , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[6] Robin Sibson,et al. Locally Equiangular Triangulations , 1978, Comput. J..
[7] David M. Mount,et al. Globally-Equiangular triangulations of co-circular points in 0(n log n) time , 1988, SCG '88.
[8] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[9] Samuel Rippa,et al. Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..
[10] Vincent Kanade,et al. Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.
[11] Andrzej Lingas,et al. On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.
[12] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[13] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[14] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[15] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .
[16] Micha Sharir,et al. On the Zone Theorem for Hyperplane Arrangements , 1991, SIAM J. Comput..
[17] Jirí Matousek,et al. Piecewise linear paths among convex obstacles , 1993, STOC.
[18] Raimund Seidel,et al. Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..
[19] Bernard Chazelle,et al. An Improved Algorithm for Constructing kth-Order Voronoi Diagrams , 1985, IEEE Transactions on Computers.
[20] Derick Wood,et al. Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.
[21] G. Toussaint,et al. On Geometric Algorithms that use the Furthest-Point Voronoi Diagram , 1985 .
[22] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[23] Chak-Kuen Wong,et al. On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..
[24] Franz Aurenhammer,et al. A Novel Type of Skeleton for Polygons , 1995, J. Univers. Comput. Sci..
[25] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[26] Tiow Seng Tan,et al. A quadratic time algorithm for the minmax length triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[27] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[28] Olivier Devillers. Randomization yields simple O(n log* n) algorithms for difficult Omega(n) problems , 1992, Int. J. Comput. Geom. Appl..
[29] D. Meek,et al. Empty-shape triangulation algorithms , 1994 .
[30] Kenneth L. Clarkson,et al. New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..
[31] Georges Voronoi,et al. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs. , 1909 .
[32] S. Sloan. A fast algorithm for constructing Delaunay triangulations in the plane , 1987 .
[33] D. A. Field,et al. Implementing Watson's algorithm in three dimensions , 1986, SCG '86.
[34] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[35] R. Seidel. Backwards Analysis of Randomized Geometric Algorithms , 1993 .
[36] Jean-Daniel Boissonnat,et al. On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..
[37] Franz Aurenhammer,et al. Geometric Relations Among Voronoi Diagrams , 1987, STACS.
[38] Jorge Urrutia,et al. Voronoi diagrams and containment of families of convex sets on the plane , 1995, SCG '95.
[39] Matthew Dickerson,et al. Simple algorithms for enumerating interpoint distances and finding $k$ nearest neighbors , 1992, Int. J. Comput. Geom. Appl..
[40] Raimund Seidel,et al. On the number of faces in higher-dimensional Voronoi diagrams , 1987, SCG '87.
[41] L. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .
[42] R. Seidel. A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .
[43] David Eppstein,et al. Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[44] Alok Aggarwal,et al. Solving query-retrieval problems by compacting Voronoi diagrams , 1990, STOC '90.
[45] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[46] D. T. Lee,et al. Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.
[47] Gautam Das,et al. WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .
[48] Bruce Randall Donald,et al. Simplified Voronoi diagrams , 1987, SCG '87.
[49] Kurt Mehlhorn,et al. On the construction of abstract voronoi diagrams , 1990, STACS.
[50] Kurt Mehlhorn,et al. How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.
[51] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes ind dimension , 1990, Comb..
[52] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[53] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.
[54] Michiel H. M. Smid,et al. Simple Randomized Algorithms for Closest Pair Problems , 1995, Nord. J. Comput..
[55] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[56] Franz Aurenhammer. A New Duality Result Concerning Voronoi Diagrams , 1986, ICALP.
[57] Godfried T. Toussaint,et al. The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..
[58] Michael Ian Shamos,et al. Divide-and-conquer in multidimensional space , 1976, STOC '76.
[59] Micha Sharir,et al. Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..
[60] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[61] Kurt Mehlhorn,et al. Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..
[62] Franz Aurenhammer,et al. A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1991, SCG '91.
[63] F. Aurenhammer. Linear combinations from power domains , 1988 .
[64] D. Chand,et al. On Convex Polyhedra , 1970 .
[65] B. Joe,et al. GEOMPACK — a software package for the generation of meshes using geometric algorithms☆ , 1991 .
[66] Ketan Mulmuley,et al. Randomized Algorithms in Computational Geometry , 2000, Handbook of Computational Geometry.
[67] Tetsuo Asano,et al. Clustering algorithms based on minimum and maximum spanning trees , 1988, SCG '88.
[68] Frank K. Hwang,et al. An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.
[69] D. H. McLain,et al. Two Dimensional Interpolation from Random Data , 1976, Comput. J..
[70] Joseph S. B. Mitchell,et al. Shortest paths among obstacles in the plane , 1993, SCG '93.
[71] Christos Levcopoulos,et al. Quasi-greedy triangulations approximating the minimum weight triangulation , 1996, SODA '96.
[72] V. T. Rajan. Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..
[73] Herbert Edelsbrunner,et al. An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..
[74] J.. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .
[75] Ketan Mulmuley,et al. On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..
[76] Thomas Roos,et al. Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.
[77] D. T. Lee,et al. Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..
[78] David P. Dobkin,et al. Delaunay graphs are almost as good as complete graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[79] David Hartvigsen,et al. Recognizing Voronoi Diagrams with Linear Programming , 1992, INFORMS J. Comput..
[80] R. Sokal,et al. A New Statistical Approach to Geographic Variation Analysis , 1969 .
[81] Otfried Cheong,et al. The Voronoi Diagram of Curved Objects , 1995, SCG '95.
[82] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[83] Oleg R. Musin. Properties of the Delaunay triangulation , 1997, SCG '97.
[84] Gerald E. Farin,et al. Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..
[85] Francis Y. L. Chin,et al. Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.
[86] Franz Aurenhammer,et al. Triangulations intersect nicely , 1996, Discret. Comput. Geom..
[87] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..
[88] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[89] Kevin Q. Brown. Geometric transforms for fast geometric algorithms , 1979 .
[90] Steven Fortune,et al. Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..
[91] Yin-Feng Xu,et al. Approaching the largest β-skeleton within a minimum weight triangulation , 1996, SCG '96.
[92] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[93] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[94] Daniel J. Rosenkrantz,et al. An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..
[95] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[96] Leonidas J. Guibas,et al. The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..
[97] Klaus H. Hinrichs,et al. Plane-Sweep Solves the Closest Pair Problem Elegantly , 1988, Inf. Process. Lett..
[98] Bernhard Geiger,et al. 3D modeling using the Delaunay triangulation , 1995, SCG '95.
[99] David E. Muller,et al. Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..
[100] Robert L. Scot Drysdale,et al. Voronoi diagrams based on convex distance functions , 1985, SCG '85.
[101] Hans-Christoph Im Hof,et al. Dirichlet regions in manifolds without conjugate points , 1979 .
[102] B. Joe. Three-dimensional triangulations from local transformations , 1989 .
[103] P. L. Powar,et al. Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..
[104] Tiow-Seng Tan,et al. Optimal two-dimensional triangulations , 1992 .
[105] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[106] Timothy Lambert,et al. The Delaunay Triangulation Maximizes the Mean Inradius , 1994, CCCG.
[107] Franz Aurenhammer,et al. Improved Algorithms for Discs and Balls Using Power Diagrams , 1988, J. Algorithms.
[108] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[109] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[110] J. Mark Keil,et al. Computing a Subgraph of the Minimum Weight Triangulation , 1994, Comput. Geom..
[111] D. Defays,et al. An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..
[112] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.
[113] Andrzej Lingas,et al. Fast Skeleton Construction , 1995, ESA.
[114] Ngoc-Minh Lê,et al. On Voronoi Diagrams in the L_p-Metric in Higher Dimensions , 1994, STACS.
[115] D. T. Lee,et al. Efficient Computation of the Geodesic Voronoi Diagram of Points in a Simple Polygon (Extended Abstract) , 1995, ESA.
[116] David G. Kirkpatrick,et al. Tentative prune-and-search for computing Voronoi vertices , 1993, SCG '93.
[117] Stefan Meiser,et al. Zur Konstruktion abstrakter Voronoidiagramme , 1993 .
[118] Victor J. Milenkovic,et al. Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.
[119] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[120] Sven Skyum,et al. A Sweepline Algorithm for Generalized Delaunay Triangulations , 1991 .
[121] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[122] Andrzej Lingas,et al. Manhattonian proximity in a simple polygon , 1992, SCG '92.
[123] Raimund Seidel,et al. Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[124] Tomás Recio,et al. On the topological shape of planar Voronoi diagrams , 1993, SCG '93.
[125] Boris Aronov,et al. A lower bound on Voronoi diagram complexity , 2002, Inf. Process. Lett..
[126] Pravin M. Vaidya,et al. Minimum Spanning Trees in k-Dimensional Space , 1988, SIAM J. Comput..
[127] Andrzej Lingas,et al. A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.
[128] Rolf Klein,et al. A Sweepcircle Algorithm for Voronoi Diagrams , 1987, WG.
[129] Siu-Wing Cheng,et al. Expected case analysis of {221}-skeletons with applications to the construction of minimum-weight triangulations , 1995 .
[130] Arne Maus,et al. Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.
[131] Anders Krogh,et al. Introduction to the theory of neural computation , 1994, The advanced book program.
[132] David G. Kirkpatrick,et al. Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[133] D. Kirkpatrick,et al. A Framework for Computational Morphology , 1985 .
[134] Jean-Daniel Boissonnat,et al. Output-sensitive construction of the $3$-d Delaunay triangulation of constrained sets of points , 1991 .
[135] Paul Chew,et al. There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..
[136] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.
[137] Frank Dehne,et al. A computational geometry approach to clustering problems , 1985, SCG '85.
[138] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[139] Endre Boros,et al. On clustering problems with connected optima in euclidean spaces , 1989, Discret. Math..
[140] J. Risler,et al. Real algebraic and semi-algebraic sets , 1990 .
[141] Thomas R,et al. Voronoi Diagrams of Line Segments Made Easy * ( Extended , 1999 .
[142] Michael B. Dillencourt,et al. A Non-Hamiltonian, Nondegenerate Delaunay Triangulation , 1987, Inf. Process. Lett..
[143] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[144] Tohru Ogawa,et al. A new algorithm for three-dimensional voronoi tessellation , 1983 .
[145] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1985, SCG '85.
[146] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[147] John F. Canny,et al. A Voronoi method for the piano-movers problem , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.
[148] David G. Kirkpatrick,et al. A compact piecewise-linear voronoi diagram for convex sites in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[149] Christos Levcopoulos,et al. The First Subquadratic Algorithm for Complete Linkage Clustering , 1995, ISAAC.
[150] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[151] C. Gibson. REAL ALGEBRAIC AND SEMI‐ALGEBRAIC SETS (Actualités Mathématiques 348) , 1991 .
[152] Franz Aurenhammer,et al. Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.
[153] Ethan D. Bolker,et al. Recognizing Dirichlet tessellations , 1985 .
[154] M. Smid. Maintaining the minimal distance of a point set in less than linear time , 1990 .
[155] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[156] Pravin M. Vaidya,et al. A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..
[157] Ketan Mulmuley,et al. Output sensitive construction of levels and Voronoi diagrams in Rd of order 1 to k , 1990, STOC '90.
[158] David G. Kirkpatrick,et al. A Note on Delaunay and Optimal Triangulations , 1980, Inf. Process. Lett..
[159] Nancy M. Amato,et al. On computing Voronoi diagrams by divide-prune-and-conquer , 1996, SCG '96.
[160] Alok Aggarwal,et al. Finding k Points with Minimum Diameter and Related Problems , 1991, J. Algorithms.
[161] Robin Sibson,et al. Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..
[162] Mariette Yvinec,et al. Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1995, SCG '95.
[163] Andrew Chi-Chih Yao,et al. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..
[164] Micha Sharir,et al. A subexponential bound for linear programming , 1992, SCG '92.
[165] Rolf Klein,et al. Convex distance functions in 3-space are different , 1993, SCG '93.
[166] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[167] Richard J. Lipton,et al. Multidimensional Searching Problems , 1976, SIAM J. Comput..
[168] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[169] Chee-Keng Yap,et al. A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.
[170] Franz Aurenhammer,et al. Straight skeletons for general polygonal figures , 1995 .
[171] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.
[172] Atsuo Suzuki,et al. APPROXIMATION OF A TESSELLATION OF THE PLANE BY A VORONOI DIAGRAM , 1986 .
[173] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[174] Sanguthevar Rajasekaran,et al. Optimal parallel randomized algorithms for the Voronoi diagram of line segments in the plane and related problems , 1994, SCG '94.
[175] Jirí Matousek,et al. Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.
[176] David Eppstein,et al. Algorithms for Proximity Problems in Higher Dimensions , 1995, Comput. Geom..
[177] Otfried Cheong,et al. Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.
[178] Herbert Edelsbrunner,et al. The union of balls and its dual shape , 1993, SCG '93.
[179] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[180] L. Paul Chew,et al. Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.
[181] Tiow Seng Tan,et al. An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..
[182] Chak-Kuen Wong,et al. Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..
[183] Michael B. Dillencourt,et al. Toughness and Delaunay triangulations , 1987, SCG '87.
[184] Bernard Chazelle,et al. An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.
[185] Franz Aurenhammer,et al. Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..
[186] Chee Yap,et al. Algorithmic motion planning , 1987 .
[187] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[188] Bruce W. Weide,et al. Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.
[189] Kazuo Murota,et al. IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .
[190] R. Prim. Shortest connection networks and some generalizations , 1957 .
[191] D. Matula,et al. Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .
[192] D. Eppstein,et al. MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .
[193] Micha Sharir,et al. Voronoi diagrams of lines in 3-space under polyhedral convex distance functions , 1995, SODA '95.
[194] Michael B. Dillencourt,et al. Finding Hamiltonian Cycles in Delaunay Triangulations Is NP-complete , 1996, Discret. Appl. Math..
[195] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[196] Timothy M. Chan,et al. Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three , 1995, SODA '95.
[197] Ngoc-Minh Lê,et al. Randomized Incremental Construction of Simple Abstract Voronoi Diagrams in 3-space , 1997, Comput. Geom..
[198] Hartmut Noltemeier,et al. On Separable Clusterings , 1989, J. Algorithms.
[199] Erik Brisson,et al. Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.
[200] Jean-Daniel Boissonnat,et al. Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation , 1993, Electronic Imaging.
[201] Robert L. Scot Drysdale,et al. A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.
[202] D. T. Lee,et al. Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[203] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[204] Tiow Seng Tan,et al. An upper bound for conforming Delaunay triangulations , 1992, SCG '92.
[205] G. L. Dirichlet. Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .
[206] Cao An Wang,et al. Efficiently updating constrained Delaunay triangulations , 1993, BIT.
[207] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[208] Andrzej Lingas,et al. A Linear-time Construction of the Relative Neighborhood Graph From the Delaunay Triangulation , 1994, Comput. Geom..
[209] Herbert Busemann,et al. The geometry of geodesics , 1955 .
[210] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[211] Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon , 1987, SCG '87.
[212] Chee-Keng Yap,et al. Algorithmic and geometric aspects of robotics , 1987 .
[213] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[214] M. Inaba. Application of weighted Voronoi diagrams and randomization to variance-based k-clustering , 1994, SoCG 1994.
[215] Giri Narasimhan,et al. New sparseness results on graph spanners , 1992, SCG '92.
[216] Lenhart K. Schubert,et al. An optimal algorithm for constructing the Delaunay triangulation of a set of line segments , 1987, SCG '87.
[217] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[218] W. A. Johnson. Reaction Kinetics in Processes of Nucleation and Growth , 1939 .
[219] Gerhard J. Woeginger,et al. Geometric Clusterings , 1991, J. Algorithms.
[220] P. Strevens. Iii , 1985 .
[221] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[222] Christos H. Papadimitriou,et al. The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..
[223] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[224] Barry Joe,et al. Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..
[225] Narendra Ahuja,et al. DOT PATTERN PROCESSING USING VORONOI POLYGONS AS NEIGHBORHOODS. , 1980 .
[226] James A. McHugh,et al. Algorithmic Graph Theory , 1986 .
[227] Guy E. Blelloch,et al. Developing a practical projection-based parallel Delaunay algorithm , 1996, SCG '96.
[228] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.