Anticipatory responses along motion trajectories in awake monkey area V1

What are the neural mechanisms underlying motion integration of translating objects? Visual motion integration is generally conceived of as a feedforward, hierarchical, information processing. However, feedforward models fail to account for many contextual effects revealed using natural moving stimuli. In particular, a translating object evokes a sequence of transient feedforward responses in the primary visual cortex but also propagations of activity through horizontal and feedback pathways. We investigated how these pathways shape the representation of a translating bar in monkey V1. We show that, for long trajectories, spiking activity builds-up hundreds of milliseconds before the bar enters the neurons’ receptive fields. Using VSDI and LFP recordings guided by a phenomenological model of propagation dynamics, we demonstrate that this anticipatory response arises from the interplay between horizontal and feedback networks driving V1 neurons well ahead of their feedforward inputs. This mechanism could subtend several perceptual contextual effects observed with translating objects. Highlights Our hypothesis is that lateral propagation of activity in V1 contributes to the integration of translating stimuli Consistent with this hypothesis, we find that a translating bar induces anticipatory spiking activity in V1 neurons. A V1 model describes how this anticipation can arise from inter and intra-cortical lateral propagation of activity. The dynamic of VSDi and LFP signals in V1 is consistent with the predictions made by the model. The intra-cortical origin is further confirmed by the fact that a bar moving from the ipsilateral hemifield does not evoke anticipation. Horizontal and feedback input are not only modulatory but can also drive spiking responses in specific contexts.

[1]  Peter Neri,et al.  Dynamic Engagement of Human Motion Detectors across Space–Time Coordinates , 2014, The Journal of Neuroscience.

[2]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[3]  Alan L. Yuille,et al.  A mathematical analysis of the motion coherence theory , 1989, International Journal of Computer Vision.

[4]  Robert A. Frazor,et al.  Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex , 2007, Neuron.

[5]  D. W. Heeley,et al.  The effect of the spatial arrangement of target lines on perceived speed , 2001, Vision Research.

[6]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[7]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E. Seidemann,et al.  Optimal temporal decoding of neural population responses in a reaction-time visual detection task. , 2008, Journal of neurophysiology.

[9]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[10]  Scott N. J. Watamaniuk,et al.  Seeing motion behind occluders , 1995, Nature.

[11]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[12]  Mazyar Fallah,et al.  A Motion-Dependent Distortion of Retinotopy in Area V4 , 2006, Neuron.

[13]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[14]  S. McKee,et al.  Detecting a trajectory embedded in random-direction motion noise , 1995, Vision Research.

[15]  S. McKee,et al.  Motion Interference: Perturbing Perceived , 1997 .

[16]  Richard T Born,et al.  Corticocortical Feedback Contributes to Surround Suppression in V1 of the Alert Primate , 2013, The Journal of Neuroscience.

[17]  Brian A Wandell,et al.  Assessment of stimulus-induced changes in human V1 visual field maps. , 2006, Journal of neurophysiology.

[18]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[19]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[20]  James T. Enns,et al.  Apparent Motion Can Impair and Enhance Target Visibility: The Role of Shape in Predicting and Postdicting Object Continuity , 2013, Front. Psychology.

[21]  S. McKee,et al.  Temporal coherence theory for the detection and measurement of visual motion , 1995, Vision Research.

[22]  Henry Kennedy,et al.  Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey , 1988, Behavioural Brain Research.

[23]  W. Metzger,et al.  Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit , 1932 .

[24]  V. S. RAMACHANDKAN,et al.  EXTRAPOLATION OF MOTION PATH IN HUMAN VISUAL PERCEPTION , 2002 .

[25]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[26]  Alexander Thiele,et al.  Effects on orientation perception of manipulating the spatio–temporal prior probability of stimuli , 2004, Vision Research.

[27]  D. Mackay Perceptual Stability of a Stroboscopically Lit Visual Field containing Self-Luminous Objects , 1958, Nature.

[28]  P. Roelfsema,et al.  Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation , 2017, Neuron.

[29]  M Mishkin,et al.  A role for the corpus callosum in visual area V4 of the macaque , 1993, Visual Neuroscience.

[30]  K. Nakayama,et al.  Temporal and spatial characteristics of the upper displacement limit for motion in random dots , 1984, Vision Research.

[31]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[32]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[33]  S. McKee,et al.  Sequential recruitment in the discrimination of velocity. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[34]  C. Gilbert,et al.  Interactions between feedback and lateral connections in the primary visual cortex , 2017, Proceedings of the National Academy of Sciences.

[35]  M. Young,et al.  Spatio‐temporal prediction and inference by V1 neurons , 2007, The European journal of neuroscience.

[36]  Luigi F. Cuturi,et al.  The effect of spatial orientation on detecting motion trajectories in noise , 2011, Vision Research.

[37]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[38]  Preeti Verghese,et al.  PII: S0042-6989(98)00033-9 , 1998 .

[39]  Amiram Grinvald,et al.  Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications , 2002, Journal of Neuroscience Methods.

[40]  J J Koenderink,et al.  Effects of element orientation on apparent motion perception , 1990, Perception & psychophysics.

[41]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[42]  R PANNIER,et al.  Presso-receptors of the carotid sinus and respiration. , 1946, The Journal of physiology.

[43]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[44]  Gregor Schöner,et al.  Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex , 2004, The Journal of physiology.

[45]  Alexander S. Ecker,et al.  Faster processing of moving compared to flashed bars in awake macaque V1 provides a neural correlate of the flash lag illusion , 2015, bioRxiv.

[46]  Alexander S. Ecker,et al.  Faster processing of moving compared to flashed bars in awake macaque V1 provides a neural correlate of the flash lag illusion , 2015 .

[47]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[48]  J Trabka,et al.  [Role of the corpus callosum]. , 1968, Acta physiologica Polonica.

[49]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[50]  O. J. Braddick,et al.  Extension of displacement limits in multiple-exposure sequences of apparent motion , 1989, Vision Research.

[51]  M. Shiffrar,et al.  Perceived speed of moving lines depends on orientation, length, speed and luminance , 1993, Vision Research.

[52]  Guillaume S. Masson,et al.  Linear model decomposition for voltage-sensitive dye imaging signals: Application in awake behaving monkey , 2011, NeuroImage.

[53]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[54]  Eyal Seidemann,et al.  The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1. , 2012, Journal of neurophysiology.

[55]  V. Ramachandran,et al.  Visual inertia in apparent motion , 1987, Vision Research.

[56]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[57]  LESLIE WELCH,et al.  PII: S0042-6989(97)00084-9 , 2002 .

[58]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[59]  G. Reeke,et al.  Network model of top-down influences on local gain and contextual interactions in visual cortex , 2013, Proceedings of the National Academy of Sciences.

[60]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[61]  Panayiota Poirazi,et al.  Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses , 2013, Front. Comput. Neurosci..

[62]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[63]  Théodore Papadopoulo,et al.  A quantification framework for post-lesion neo-vascularization in retinal angiography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[64]  Alan L. Yuille,et al.  Probabilistic Motion Estimation Based on Temporal Coherence , 2000, Neural Computation.

[65]  A. Grinvald,et al.  Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. , 2002, Journal of neurophysiology.

[66]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[67]  Terrence J. Sejnowski,et al.  Cortical travelling waves: mechanisms and computational principles , 2018, Nature Reviews Neuroscience.

[68]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[69]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[70]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[71]  Junji Watanabe,et al.  Veridical perception of moving colors by trajectory integration of input signals. , 2007, Journal of vision.

[72]  V. S. Ramachandran,et al.  Extrapolation of motion path in human visual perception , 1983, Vision Research.

[73]  P. Kornprobst,et al.  Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism , 2010, Vision Research.

[74]  F. Chavane,et al.  Voltage-sensitive dye imaging: Technique review and models , 2010, Journal of Physiology-Paris.

[75]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[76]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[77]  G. Orban,et al.  Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. , 1985, Journal of neurophysiology.

[78]  S. Kastner,et al.  Neurons with large bilateral receptive fields in monkey prelunate gyrus , 2000, Experimental Brain Research.

[79]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[80]  Frans A. J. Verstraten,et al.  Spatial summation and its interaction with the temporal integration mechanism in human motion perception , 1994, Vision Research.

[81]  F. Chavane,et al.  Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity , 2011, Front. Syst. Neurosci..

[82]  J. Koenderink,et al.  Spatiotemporal integration in the detection of coherent motion , 1984, Vision Research.

[83]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[84]  P. Roelfsema Cortical algorithms for perceptual grouping. , 2006, Annual review of neuroscience.

[85]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[86]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[87]  D. B. Bender,et al.  Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons , 1977, Brain Research.

[88]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[89]  F. Chavane,et al.  The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave , 2014, Nature Communications.

[90]  Hamutal Slovin,et al.  Population response to contextual influences in the primary visual cortex. , 2010, Cerebral cortex.

[91]  M. Landy,et al.  The effect of viewpoint on perceived visual roughness. , 2007, Journal of vision.

[92]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[93]  Alain Destexhe,et al.  Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate , 2019, The Journal of Neuroscience.

[94]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[95]  Jean Lorenceau,et al.  Perceptual grouping in the Ternus display: evidence for an `association field' in apparent motion , 2002, Vision Research.

[96]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[98]  F. Chavane,et al.  Dynamics of Local Input Normalization Result from Balanced Short- and Long-Range Intracortical Interactions in Area V1 , 2012, The Journal of Neuroscience.

[99]  S P McKee,et al.  Stimulus configuration determines the detectability of motion signals in noise. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[100]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[101]  David Whitney,et al.  Visual motion modulates pattern sensitivity ahead, behind, and beside motion , 2014, Vision Research.

[102]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[103]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[104]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[105]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[106]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[107]  C. Gilbert,et al.  Top-Down Modulation of Lateral Interactions in Visual Cortex , 2013, The Journal of Neuroscience.

[108]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[109]  J. Gallant,et al.  Spectral receptive field properties explain shape selectivity in area V4. , 2006, Journal of neurophysiology.

[110]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[111]  Guillaume S. Masson,et al.  The Flash-Lag Effect as a Motion-Based Predictive Shift , 2017, PLoS Comput. Biol..

[112]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[113]  Neil W. Roach,et al.  Report a Forward Prediction of Spatial Pattern , 2016 .

[114]  Anders Lansner,et al.  Anisotropic connectivity implements motion-based prediction in a spiking neural network , 2013, Front. Comput. Neurosci..

[115]  O. Braddick,et al.  The combination of motion signals over time , 1989, Vision Research.

[116]  Caspar M. Schwiedrzik,et al.  Stimulus Predictability Reduces Responses in Primary Visual Cortex , 2010, The Journal of Neuroscience.

[117]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[118]  Caspar M. Schwiedrzik,et al.  A spatio-temporal interaction on the apparent motion trace , 2007, Vision Research.

[119]  Guillaume S. Masson,et al.  Motion-Based Prediction Is Sufficient to Solve the Aperture Problem , 2012, Neural Computation.

[120]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[121]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.