A Relational Approach to Sensor Network Data Mining

In this chapter a relational framework able to model and analyse the data observed by nodes involved in a sensor network is presented. In particular, we propose a powerful and expressive description language able to represent the spatio-temporal relations appearing in sensor network data along with the environmental information. Furthermore, a general purpose system able to elicit hidden frequent temporal correlations between sensor nodes is presented. The framework has been extended in order to take into account interval-based temporal data by introducing some operators based on a temporal interval logic. A preliminary abstraction step with the aim of segmenting and labelling the real-valued time series into similar subsequences is performed exploiting a kernel density estimation approach. The prposed framework has been evaluated on real world data collected from a wireless sensor network.

[1]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[2]  Hillol Kargupta,et al.  Distributed Data Mining: Algorithms, Systems, and Applications , 2003 .

[3]  Hendrik Blockeel,et al.  From Shell Logs to Shell Scripts , 2001, ILP.

[4]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[5]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[6]  Andreas D. Lattner,et al.  Unsupervised Learning of Sequential Patterns , 2004 .

[7]  Grigorios Tsoumakas,et al.  Distributed Data Mining , 2009, Encyclopedia of Data Warehousing and Mining.

[8]  Andreas D. Lattner,et al.  Mining Temporal Patterns from Relational Data , 2005, LWA.

[9]  Mohamed Medhat Gaber,et al.  Knowledge Discovery from Sensor Data , 2008 .

[10]  Stefano Ferilli,et al.  Multi-Dimensional Relational Sequence Mining , 2008, Fundam. Informaticae.

[11]  Hans-Peter Kriegel,et al.  Algorithms and Applications for Spatial Data Mining , 2001 .

[12]  Stefano Ferilli,et al.  Unsupervised Discretization Using Kernel Density Estimation , 2007, IJCAI.

[13]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[14]  Dimitrios Gunopulos,et al.  Discovering frequent arrangements of temporal intervals , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[15]  Frank Höppner,et al.  Learning Dependencies in Multivariate Time Series , 2008 .

[16]  Stefano Ferilli,et al.  Relational Temporal Data Mining for Wireless Sensor Networks , 2009, AI*IA.

[17]  Jeffrey D. Ullman,et al.  Principles of Database and Knowledge-Base Systems, Volume II , 1988, Principles of computer science series.

[18]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[19]  Donato Malerba,et al.  An ILP Method for Spatial Association Rule Mining , 2001 .

[20]  Ada Wai-Chee Fu,et al.  Discovering Temporal Patterns for Interval-Based Events , 2000, DaWaK.

[21]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[22]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[23]  Max J. Egenhofer,et al.  Advances in Spatial Databases , 1997, Lecture Notes in Computer Science.

[24]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[25]  Stefano Ferilli,et al.  A General Similarity Framework for Horn Clause Logic , 2009, Fundam. Informaticae.

[26]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[27]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[28]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[29]  P. S. Sastry,et al.  Generalized frequent episodes in Event Sequences , 2002 .