A History and Theory of Textual Event Detection and Recognition

There is large and growing amounts of textual data that contains information about human activities. Mining interesting knowledge from this textual data is a challenging task because it consists of unstructured or semistructured text that are written in natural language. In the field of artificial intelligence, event-oriented techniques are helpful in addressing this problem, where information retrieval (IR), information extraction (IE) and graph methods (GMs) are three of the most important paradigms in supporting event-oriented processing. In recent years, due to information explosions, textual event detection and recognition have received extensive research attention and achieved great success. Many surveys have been conducted to retrospectively assess the development of event detection. However, until now, all of these surveys have focused on only a single aspect of IR, IE or GMs. There is no research that provides a complete introduction or a comparison of IR, IE, and GMs. In this article, a survey about these techniques is provided from a broader perspective, and a convenient and comprehensive comparison of these techniques is given. The hallmark of this article is that it is the first survey that combines IR, IE and GMs in a single frame and will therefore benefit researchers by acting as a reference in this field.

[1]  Yorick Wilks,et al.  Information Extraction: Beyond Document Retrieval , 1998, Int. J. Comput. Linguistics Chin. Lang. Process..

[2]  Heng Ji,et al.  Knowledge Base Population: Successful Approaches and Challenges , 2011, ACL.

[3]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Event Chains , 2008, ACL.

[4]  Loet Leydesdorff,et al.  Co-occurrence matrices and their applications in information science: Extending ACA to the Web environment , 2006, J. Assoc. Inf. Sci. Technol..

[5]  William M. Pottenger,et al.  A Survey of Emerging Trend Detection in Textual Data Mining , 2004 .

[6]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[7]  Yukio Ohsawa,et al.  KeyGraph: automatic indexing by co-occurrence graph based on building construction metaphor , 1998, Proceedings IEEE International Forum on Research and Technology Advances in Digital Libraries -ADL'98-.

[8]  Mehran Sahami,et al.  A web-based kernel function for measuring the similarity of short text snippets , 2006, WWW '06.

[9]  Jonathan G. Fiscus,et al.  NIST's 1998 topic detection and tracking evaluation (TDT2) , 1999, EUROSPEECH.

[10]  Yannis Stavrakas,et al.  Degeneracy-Based Real-Time Sub-Event Detection in Twitter Stream , 2015, ICWSM.

[11]  Andy Way,et al.  Exploiting Cross-Sentence Context for Neural Machine Translation , 2017, EMNLP.

[12]  Oren Etzioni,et al.  The Tradeoffs Between Open and Traditional Relation Extraction , 2008, ACL.

[13]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[14]  Liyuan Liu,et al.  Cross-relation Cross-bag Attention for Distantly-supervised Relation Extraction , 2018, AAAI.

[15]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[16]  Hiroshi Nakagawa,et al.  Reducing Wrong Labels in Distant Supervision for Relation Extraction , 2012, ACL.

[17]  Gerald DeJong,et al.  Skimming Newspaper Stories by Computer , 1977, IJCAI.

[18]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[19]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[20]  Doug Downey,et al.  Unsupervised named-entity extraction from the Web: An experimental study , 2005, Artif. Intell..

[21]  Gerard Salton,et al.  On the Specification of Term Values in Automatic Indexing , 1973 .

[22]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[23]  Gerhard Weikum,et al.  EVIN: building a knowledge base of events , 2014, WWW.

[24]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[25]  Nianwen Xue,et al.  Using a Smoothing Maximum Entropy Model for Chinese Nominal Entity Tagging , 2004, IJCNLP.

[26]  Ralph Grishman,et al.  Scenario customization for information extraction , 2000 .

[27]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[28]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[29]  Xinya Du,et al.  Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding , 2020, ACL.

[30]  Ping Chen,et al.  Recognizing Nested Named Entity Based on the Neural Network Boundary Assembling Model , 2020, IEEE Intelligent Systems.

[31]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[32]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[33]  Qinghua Zheng,et al.  Feature assembly method for extracting relations in Chinese , 2015, Artif. Intell..

[34]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[35]  David Ahn,et al.  The stages of event extraction , 2006 .

[36]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[37]  Antske Fokkens,et al.  NewsReader: Using knowledge resources in a cross-lingual reading machine to generate more knowledge from massive streams of news , 2016, Knowl. Based Syst..

[38]  Udo Hahn,et al.  Making understanders out of parsers: Semantically driven parsing as a key concept for realistic text understanding applications , 1989, Int. J. Intell. Syst..

[39]  Jian Su,et al.  A Composite Kernel to Extract Relations between Entities with Both Flat and Structured Features , 2006, ACL.

[40]  Claudio Carpineto,et al.  A Survey of Automatic Query Expansion in Information Retrieval , 2012, CSUR.

[41]  Ralph Grishman,et al.  Information Extraction: Techniques and Challenges , 1997, SCIE.

[42]  Bo Xu,et al.  Chinese Named Entity Recognition Combining Statistical Model wih Human Knowledge , 2003, NER@ACL.

[43]  James Allan,et al.  Flexible intrinsic evaluation of hierarchical clustering for TDT , 2003, CIKM '03.

[44]  Yang Jin,et al.  Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE , 2005, ACL.

[45]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[46]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[47]  Matthew Hurst,et al.  Event Detection and Tracking in Social Streams , 2009, ICWSM.

[48]  Wendy G. Lehnert,et al.  Using Decision Trees for Coreference Resolution , 1995, IJCAI.

[49]  Pascal Frossard,et al.  Multiscale event detection in social media , 2014, Data Mining and Knowledge Discovery.

[50]  Ruifang He,et al.  Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks , 2017, IJCNLP.

[51]  Qinghua Zheng,et al.  Exploring open information via event network† , 2017, Natural Language Engineering.

[52]  Makoto Miwa,et al.  Modeling Joint Entity and Relation Extraction with Table Representation , 2014, EMNLP.

[53]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[54]  Hideki Kozima,et al.  Similarity between Words Computed by Spreading Activation on an English Dictionary , 1993, EACL.

[55]  Jun Zhao,et al.  Relation Classification via Convolutional Deep Neural Network , 2014, COLING.

[56]  Xiaoqiang Luo,et al.  A Statistical Model for Multilingual Entity Detection and Tracking , 2004, NAACL.

[57]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[58]  Katherine W. McCain,et al.  Visualizing a Discipline: An Author Co-Citation Analysis of Information Science, 1972-1995 , 1998, J. Am. Soc. Inf. Sci..

[59]  Andrew McCallum,et al.  Toward Conditional Models of Identity Uncertainty with Application to Proper Noun Coreference , 2003, IIWeb.

[60]  Hwee Tou Ng,et al.  A maximum entropy approach to information extraction from semi-structured and free text , 2002, AAAI/IAAI.

[61]  Donna K. Harman,et al.  Overview of the first TREC conference , 1993, SIGIR.

[62]  Dolf Trieschnigg,et al.  TNO Hierarchical topic detection report at TDT 2004 , 2004 .

[63]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[64]  Yaojie Lu,et al.  Nugget Proposal Networks for Chinese Event Detection , 2018, ACL.

[65]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[66]  Sampo Pyysalo,et al.  Overview of BioNLP’09 Shared Task on Event Extraction , 2009, BioNLP@HLT-NAACL.

[67]  Dan Klein,et al.  Unsupervised Coreference Resolution in a Nonparametric Bayesian Model , 2007, ACL.

[68]  Marvin Minsky,et al.  A framework for representing knowledge" in the psychology of computer vision , 1975 .

[69]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[70]  Xihong Wu,et al.  Parsing named entity as syntactic structure , 2014, INTERSPEECH.

[71]  Wei Xu,et al.  Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction , 2019, EMNLP.

[72]  Nianwen Xu,et al.  Chinese Word Segmentation as Character Tagging , 2003, Int. J. Comput. Linguistics Chin. Lang. Process..

[73]  Qinghua Zheng,et al.  Omni-word Feature and Soft Constraint for Chinese Relation Extraction , 2014, ACL.

[74]  Bo Xu,et al.  Chinese named entity recognition based on multiple features , 2005, EMNLP 2005.

[75]  Vincent Ng,et al.  Supervised Noun Phrase Coreference Research: The First Fifteen Years , 2010, ACL.

[76]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[77]  Yang Liu,et al.  Exploring Fine-grained Entity Type Constraints for Distantly Supervised Relation Extraction , 2014, COLING.

[78]  Heng Ji,et al.  Language Specific Issue and Feature Exploration in Chinese Event Extraction , 2009, NAACL.

[79]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[80]  John D. Lafferty,et al.  Statistical Models for Text Segmentation , 1999, Machine Learning.

[81]  Yaojie Lu,et al.  Distilling Discrimination and Generalization Knowledge for Event Detection via Delta-Representation Learning , 2019, ACL.

[82]  Elizabeth D. Liddy,et al.  Enhanced Text Retrieval Using Natural Language Processing , 2005 .

[83]  W. Bruce Croft,et al.  The History of Information Retrieval Research , 2012, Proceedings of the IEEE.

[84]  Hans Uszkoreit,et al.  Semantic Rule Filtering for Web-Scale Relation Extraction , 2013, SEMWEB.

[85]  Edouard Grave,et al.  A convex relaxation for weakly supervised relation extraction , 2014, EMNLP.

[86]  Goran Glavas,et al.  Unsupervised Text Segmentation Using Semantic Relatedness Graphs , 2016, *SEMEVAL.

[87]  Xiaoli Z. Fern,et al.  Event Detection with Neural Networks: A Rigorous Empirical Evaluation , 2018, EMNLP.

[88]  William Yang Wang,et al.  Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning , 2018, ACL.

[89]  Yue Zhang,et al.  End-to-End Neural Relation Extraction with Global Optimization , 2017, EMNLP.

[90]  Dan Roth,et al.  Probabilistic Reasoning for Entity & Relation Recognition , 2002, COLING.

[91]  Sergey Brin,et al.  Extracting Patterns and Relations from the World Wide Web , 1998, WebDB.

[92]  Christina Lioma,et al.  Graph-based term weighting for information retrieval , 2011, Information Retrieval.

[93]  Ellen Riloff,et al.  Automatically Acquiring Conceptual Patterns without an Annotated Corpus , 1995, VLC@ACL.

[94]  Wei Lu,et al.  Efficient Dependency-Guided Named Entity Recognition , 2017, AAAI.

[95]  M Damashek,et al.  Gauging Similarity with n-Grams: Language-Independent Categorization of Text , 1995, Science.

[96]  Xing Xie,et al.  REET: Joint Relation Extraction and Entity Typing via Multi-task Learning , 2019, NLPCC.

[97]  Wael Khreich,et al.  A Survey of Techniques for Event Detection in Twitter , 2015, Comput. Intell..

[98]  John D. Burger,et al.  MITRE-Bedford: description of the ALEMBIC system as used for MUC-4 , 1992, MUC.

[99]  George R. Krupka,et al.  IsoQuest Inc.: Description of the NetOwl™ Extractor System as Used for MUC-7 , 1998, MUC.

[100]  L. Getoor,et al.  1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[101]  Jinqiao Shi,et al.  Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation , 2020, FINDINGS.

[102]  Pascal Poupart,et al.  Representation Learning for Dynamic Graphs: A Survey , 2020, J. Mach. Learn. Res..

[103]  Bo Zhang,et al.  StatSnowball: a statistical approach to extracting entity relationships , 2009, WWW '09.

[104]  Ricard V. Solé,et al.  Zipf's Law and Random Texts , 2002, Adv. Complex Syst..

[105]  Walter Daelemans,et al.  TiMBL: Tilburg Memory-Based Learner , 2007 .

[106]  Christopher D. Manning,et al.  Nested Named Entity Recognition , 2009, EMNLP.

[107]  Reinhard Köhler,et al.  Patterns in syntactic dependency networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  Noah A. Smith,et al.  Linguistic Structured Sparsity in Text Categorization , 2014, ACL.

[109]  Piek T. J. M. Vossen,et al.  NewsReader: recording history from daily news streams , 2014, LREC.

[110]  David N. Wells,et al.  A Companion to the History of the Book , 2010 .

[111]  Ramon Ferrer i Cancho,et al.  The small world of human language , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[112]  Zongtian Liu,et al.  Event Recognition Based on Deep Learning in Chinese Texts , 2016, PloS one.

[113]  Douglas W. Oard,et al.  A Joint Model for Document Segmentation and Segment Labeling , 2020, ACL.

[114]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[115]  Mark A. Przybocki,et al.  The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation , 2004, LREC.

[116]  Hwee Tou Ng,et al.  A Machine Learning Approach to Coreference Resolution of Noun Phrases , 2001, CL.

[117]  Wendy G. Lehnert,et al.  Plot Units and Narrative Summarization , 1981, Cogn. Sci..

[118]  Timothy Baldwin,et al.  Relation Guided Bootstrapping of Semantic Lexicons , 2011, ACL.

[119]  Oren Etzioni,et al.  Open domain event extraction from twitter , 2012, KDD.

[120]  Jian Su,et al.  Exploring Various Knowledge in Relation Extraction , 2005, ACL.

[121]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[122]  Nanda Kambhatla,et al.  Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Information Extraction , 2004, ACL.

[123]  Wanxiang Che,et al.  Joint Word Alignment and Bilingual Named Entity Recognition Using Dual Decomposition , 2013, ACL.

[124]  Makoto Miwa,et al.  End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures , 2016, ACL.

[125]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[126]  Christos Faloutsos,et al.  Fast discovery of connection subgraphs , 2004, KDD.

[127]  Roger C. Schank,et al.  Conceptual dependency: A theory of natural language understanding , 1972 .

[128]  Partha Dasgupta,et al.  Topology of the conceptual network of language. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  Guido Caldarelli,et al.  Spectral Methods Cluster Words of the Same Class in a Syntactic Dependency Network , 2005, Int. J. Bifurc. Chaos.

[130]  Wessel Kraaij,et al.  Variations on language modeling for information retrieval , 2005, SIGF.

[131]  James Allan,et al.  First story detection in TDT is hard , 2000, CIKM '00.

[132]  Dmitry Zelenko,et al.  Kernel Methods for Relation Extraction , 2002, J. Mach. Learn. Res..

[133]  Kamalakar Karlapalem,et al.  ET: events from tweets , 2013, WWW.

[134]  Wenji Mao,et al.  An Encoder-Memory-Decoder Framework for Sub-Event Detection in Social Media , 2018, CIKM.

[135]  Romaric Besançon,et al.  Filtering and clustering relations for unsupervised information extraction in open domain , 2011, CIKM '11.

[136]  Sampo Pyysalo,et al.  Overview of BioNLP Shared Task 2013 , 2013, BioNLP@ACL.

[137]  Bu-Sung Lee,et al.  Event Detection in Twitter , 2011, ICWSM.

[138]  W. Bruce Croft,et al.  Computationally tractable probabilistic modeling of Boolean operators , 1997, SIGIR '97.

[139]  Christopher D. Manning,et al.  Joint Parsing and Named Entity Recognition , 2009, NAACL.

[140]  J. Curran,et al.  Minimising semantic drift with Mutual Exclusion Bootstrapping , 2007 .

[141]  Hans Peter Luhn,et al.  A Statistical Approach to Mechanized Encoding and Searching of Literary Information , 1957, IBM J. Res. Dev..

[142]  Beatrice Alex,et al.  Recognising Nested Named Entities in Biomedical Text , 2007, BioNLP@ACL.

[143]  Dan Klein,et al.  Coreference Resolution in a Modular, Entity-Centered Model , 2010, NAACL.

[144]  Ning Ding,et al.  Event Detection with Trigger-Aware Lattice Neural Network , 2019, EMNLP.

[145]  James Allan,et al.  Relevance models for topic detection and tracking , 2002 .

[146]  Keh-Jiann Chen,et al.  Unknown Word Detection for Chinese by a Corpus-based Learning Method , 1998, ROCLING/IJCLCLP.

[147]  Ralph Grishman,et al.  Graph Convolutional Networks With Argument-Aware Pooling for Event Detection , 2018, AAAI.

[148]  Jonathan G. Fiscus,et al.  Topic detection and tracking evaluation overview , 2002 .

[149]  Preslav Nakov,et al.  SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations Between Pairs of Nominals , 2009, SEW@NAACL-HLT.

[150]  Jan Snajder,et al.  Event graphs for information retrieval and multi-document summarization , 2014, Expert Syst. Appl..

[151]  Michael J. Witbrock,et al.  An Introduction to the Syntax and Content of Cyc , 2006, AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering.

[152]  James Allan,et al.  On-Line New Event Detection and Tracking , 1998, SIGIR.

[153]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.

[154]  Estevam R. Hruschka,et al.  Discovering Relations between Noun Categories , 2011, EMNLP.

[155]  Jun'ichi Tsujii,et al.  Corpus annotation for mining biomedical events from literature , 2008, BMC Bioinformatics.

[156]  Maria Teresa Pazienza,et al.  Information Extraction A Multidisciplinary Approach to an Emerging Information Technology , 1997, Lecture Notes in Computer Science.

[157]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[158]  Jakub Piskorski,et al.  Online News Event Extraction for Global Crisis Surveillance , 2011, Trans. Comput. Collect. Intell..

[159]  Thien Huu Nguyen,et al.  Similar but not the Same: Word Sense Disambiguation Improves Event Detection via Neural Representation Matching , 2018, EMNLP.

[160]  Prasenjit Mitra,et al.  Event Detection and Visualization for Social Text Streams , 2007, ICWSM.

[161]  Danushka Bollegala,et al.  Combining Long Short Term Memory and Convolutional Neural Network for Cross-Sentence n-ary Relation Extraction , 2019, AKBC.

[162]  Heng Ji,et al.  Biomedical Event Extraction based on Knowledge-driven Tree-LSTM , 2019, NAACL.

[163]  Andrew McCallum,et al.  First-Order Probabilistic Models for Coreference Resolution , 2007, NAACL.

[164]  Chiranjib Bhattacharyya,et al.  RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information , 2018, EMNLP.

[165]  Adam Kilgarriff,et al.  Language is never, ever, ever, random , 2005 .

[166]  Thomas A. Runkler,et al.  Neural Relation Extraction within and across Sentence Boundaries , 2019, AAAI.

[167]  Andrew McCallum,et al.  Conditional Models of Identity Uncertainty with Application to Noun Coreference , 2004, NIPS.

[168]  Ralph Grishman,et al.  Extracting Relations with Integrated Information Using Kernel Methods , 2005, ACL.

[169]  Andrew McCallum,et al.  Chinese Segmentation and New Word Detection using Conditional Random Fields , 2004, COLING.

[170]  Jian Su,et al.  An Entity-Mention Model for Coreference Resolution with Inductive Logic Programming , 2008, ACL.

[171]  Divesh Srivastava,et al.  Dense subgraph maintenance under streaming edge weight updates for real-time story identification , 2012, The VLDB Journal.

[172]  Margaret Masterman Semantic message detection for machine translation, using an interlingua , 1961, EARLYMT.

[173]  Hal Daumé Notes on CG and LM-BFGS Optimization of Logistic Regression , 2008 .

[174]  Doug Downey,et al.  Sparse Information Extraction: Unsupervised Language Models to the Rescue , 2007, ACL.

[175]  Andrew McCallum,et al.  Collective Cross-Document Relation Extraction Without Labelled Data , 2010, EMNLP.

[176]  Antske Fokkens,et al.  Building event-centric knowledge graphs from news , 2016, J. Web Semant..

[177]  Distant Supervision for Relation Extraction with Matrix Completion , 2014, ACL.

[178]  Fabio Rinaldi,et al.  FACILE: Description of the NE System Used for MUC-7 , 1998, MUC.

[179]  Sheng Zhang,et al.  MT/IE: Cross-lingual Open Information Extraction with Neural Sequence-to-Sequence Models , 2017, EACL.

[180]  Mark Liberman,et al.  Corpora for topic detection and tracking , 2002 .

[181]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[182]  Blaz Fortuna,et al.  Language Processing Infrastructure in the XLike Project , 2014, LREC.

[183]  George A. Miller WordNet: A Lexical Database for English , 1992, HLT.

[184]  Fernando Diaz,et al.  Processing Social Media Messages in Mass Emergency: Survey Summary , 2018, WWW.

[185]  Aravind Srinivasan,et al.  'Beating the news' with EMBERS: forecasting civil unrest using open source indicators , 2014, KDD.

[186]  Christopher D. Manning,et al.  Leveraging Linguistic Structure For Open Domain Information Extraction , 2015, ACL.

[187]  Igor Brigadir,et al.  Event Detection in Twitter using Aggressive Filtering and Hierarchical Tweet Clustering , 2014, SNOW-DC@WWW.

[188]  Thorsten Brants,et al.  A System for new event detection , 2003, SIGIR.

[189]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[190]  Yu Xu,et al.  Growing Story Forest Online from Massive Breaking News , 2017, CIKM.

[191]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[192]  Makoto Nagao,et al.  An Automatic Method of the Extraction of Important Words from Japanese Scientific Documents , 1976 .

[193]  Zhi Jin,et al.  Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths , 2015, EMNLP.

[194]  Estela Saquete Boró,et al.  TimeML Events Recognition and Classification: Learning CRF Models with Semantic Roles , 2010, COLING.

[195]  D. Rumelhart NOTES ON A SCHEMA FOR STORIES , 1975 .

[196]  Jun Zhao,et al.  Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks , 2015, EMNLP.

[197]  Cyril W. Cleverdon,et al.  Aslib Cranfield research project - Factors determining the performance of indexing systems; Volume 1, Design; Part 2, Appendices , 1966 .

[198]  Jeffrey Ling,et al.  Matching the Blanks: Distributional Similarity for Relation Learning , 2019, ACL.

[199]  John D. Lafferty,et al.  Text Segmentation Using Exponential Models , 1997, EMNLP.

[200]  Silvio Ceccato,et al.  LINGUISTIC ANALYSIS AND PROGRAMMING FOR MECHANICAL TRANSLATION (MECHANICAL TRANSLATION AND THOUGHT) , 1960 .

[201]  D. G. Hays Dependency Theory: A Formalism and Some Observations , 1964 .

[202]  Vincent Ng,et al.  Unsupervised Models for Coreference Resolution , 2008, EMNLP.

[203]  Cristina Nicolae,et al.  BESTCUT: A Graph Algorithm for Coreference Resolution , 2006, EMNLP.

[204]  Sachin Patel,et al.  An Overview on Event Evolution Technique , 2013 .

[205]  James Allan,et al.  UMass at TDT 2004 , 2004 .

[206]  Nanyun Peng,et al.  Cross-Sentence N-ary Relation Extraction with Graph LSTMs , 2017, TACL.

[207]  Shuo Bai,et al.  ICT ’ s Approaches to HTD and Tracking at TDT 2004 , 2004 .

[208]  Philip Edmonds,et al.  Choosing the Word Most Typical in Context Using a Lexical Co-occurrence Network , 1997, ACL.

[209]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[210]  Jian Liu,et al.  Event Detection via Gated Multilingual Attention Mechanism , 2018, AAAI.

[211]  Yiming Yang,et al.  Learning approaches for detecting and tracking news events , 1999, IEEE Intell. Syst..

[212]  Maria T. Pazienza,et al.  Information Extraction , 2002, Lecture Notes in Computer Science.

[213]  Jon M. Kleinberg,et al.  Bursty and Hierarchical Structure in Streams , 2002, Data Mining and Knowledge Discovery.

[214]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[215]  Xianpei Han,et al.  A Feature-Enriched Tree Kernel for Relation Extraction , 2014, ACL.

[216]  Robert Dale,et al.  Handbook of Natural Language Processing , 2001, Computational Linguistics.

[217]  Yiming Yang,et al.  A study of retrospective and on-line event detection , 1998, SIGIR '98.

[218]  Erik Cambria,et al.  Anaphora and Coreference Resolution: A Review , 2018, Inf. Fusion.

[219]  Oren Etzioni,et al.  Open Information Extraction: The Second Generation , 2011, IJCAI.

[220]  Daniel S. Weld,et al.  Using Wikipedia to bootstrap open information extraction , 2009, SGMD.

[221]  Lei Zhang,et al.  Chinese Named Entity Identification Using Class-based Language Model , 2002, COLING.

[222]  Andrew McCallum,et al.  Relation Extraction with Matrix Factorization and Universal Schemas , 2013, NAACL.

[223]  Yubo Chen,et al.  Neural Cross-Lingual Event Detection with Minimal Parallel Resources , 2019, EMNLP.

[224]  Wei Lu,et al.  Attention Guided Graph Convolutional Networks for Relation Extraction , 2019, ACL.

[225]  Luis Gravano,et al.  Snowball: extracting relations from large plain-text collections , 2000, DL '00.

[226]  Sanda M. Harabagiu,et al.  Unsupervised Event Coreference Resolution with Rich Linguistic Features , 2010, ACL.

[227]  Abdalghani Abujabal,et al.  Important Events in the Past, Present, and Future , 2015, WWW.

[228]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[229]  Cyril W. Cleverdon,et al.  Factors determining the performance of indexing systems , 1966 .

[230]  Gerhard Weikum,et al.  A Fresh Look on Knowledge Bases: Distilling Named Events from News , 2014, CIKM.

[231]  Utkarsh Upadhyay,et al.  Recurrent Marked Temporal Point Processes: Embedding Event History to Vector , 2016, KDD.

[232]  J. Allan,et al.  On-Line New Event Detection using Single Pass Clustering , 1998 .

[233]  Ping Chen,et al.  A Multi-Channel Deep Neural Network for Relation Extraction , 2020, IEEE Access.

[234]  Akiko Aizawa,et al.  An information-theoretic perspective of tf-idf measures , 2003, Inf. Process. Manag..

[235]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[236]  Bin Zhang,et al.  Adaptive online event detection in news streams , 2017, Knowl. Based Syst..

[237]  Marie-Francine Moens,et al.  Information Extraction: Algorithms and Prospects in a Retrieval Context , 2006, The Information Retrieval Series.

[238]  Roni Rosenfeld,et al.  Learning Hidden Markov Model Structure for Information Extraction , 1999 .

[239]  W. Kilmer A Friendly Guide To Wavelets , 1998, Proceedings of the IEEE.

[240]  Haitao Liu,et al.  What role does syntax play in a language network , 2008 .

[241]  Hoifung Poon,et al.  Document-Level N-ary Relation Extraction with Multiscale Representation Learning , 2019, NAACL.

[242]  Karën Fort,et al.  BioNLP Shared Task 2011 – Bacteria Gene Interactions and Renaming , 2011, BioNLP@ACL.

[243]  Ying Chen,et al.  Detection of Entity Mentions Occuring in English and Chinese Text , 2005, HLT.

[244]  Aristides Gionis,et al.  Mining Temporal Networks , 2019, KDD.

[245]  Dan Roth,et al.  Design Challenges and Misconceptions in Named Entity Recognition , 2009, CoNLL.

[246]  Wei-Yun Ma,et al.  GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction , 2019, ACL.

[247]  Pedro M. Domingos,et al.  Joint Unsupervised Coreference Resolution with Markov Logic , 2008, EMNLP.

[248]  Luke S. Zettlemoyer,et al.  End-to-end Neural Coreference Resolution , 2017, EMNLP.

[249]  Changning Huang,et al.  Chinese Word Segmentation and Named Entity Recognition: A Pragmatic Approach , 2005, CL.

[250]  Zornitsa Kozareva,et al.  Learning Arguments and Supertypes of Semantic Relations Using Recursive Patterns , 2010, ACL.

[251]  Peng Zhou,et al.  Distant supervision for relation extraction with hierarchical selective attention , 2018, Neural Networks.

[252]  Hideki Kozima,et al.  Text Segmentation Based on Similarity between Words , 1993, ACL.

[253]  Qinghua Zheng,et al.  A Set Space Model to Capture Structural Information of a Sentence , 2019, IEEE Access.

[254]  Roger C. Schank,et al.  Scripts, plans, goals and understanding: an inquiry into human knowledge structures , 1978 .

[255]  Clare R. Voss,et al.  Cross-lingual Structure Transfer for Relation and Event Extraction , 2019, EMNLP.

[256]  Hinrich Schütze,et al.  Active Learning for Coreference Resolution , 2012, NAACL.

[257]  Le Song,et al.  Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs , 2017, ICML.

[258]  Chao-Huang Chang,et al.  Recognizing Unregistered Names for Mandarin Word Identification , 1992, COLING.

[259]  Qinghua Zheng,et al.  A Boundary Assembling Method for Chinese Entity-Mention Recognition , 2015, IEEE Intelligent Systems.

[260]  Cong Yu,et al.  Dynamic relationship and event discovery , 2011, WSDM '11.

[261]  Qinghua Zheng,et al.  A Set Space Model for Feature Calculus , 2017, IEEE Intelligent Systems.

[262]  Ed Greengrass,et al.  Information Retrieval: A Survey , 2000 .

[263]  Denilson Barbosa,et al.  Open Information Extraction with Tree Kernels , 2013, NAACL.

[264]  Daniel S. Weld,et al.  Learning 5000 Relational Extractors , 2010, ACL.

[265]  Bowen Zhou,et al.  Classifying Relations by Ranking with Convolutional Neural Networks , 2015, ACL.

[266]  Mathias Niepert,et al.  Cross-Sentence N-ary Relation Extraction using Lower-Arity Universal Schemas , 2019, EMNLP.

[267]  Yiming Yang,et al.  Topic Detection and Tracking Pilot Study Final Report , 1998 .