Local evolvability of statistically neutral GasNet robot controllers.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[3]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[4]  M. Eigen New concepts for dealing with the evolution of nucleic acids. , 1987, Cold Spring Harbor symposia on quantitative biology.

[5]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[6]  T. Ohta THE NEARLY NEUTRAL THEORY OF MOLECULAR EVOLUTION , 1992 .

[7]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[8]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[9]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[10]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[11]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[12]  C. Adami,et al.  Self-organized criticality in living systems , 1994, adap-org/9401001.

[13]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[14]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[15]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[16]  R. Lenski,et al.  Punctuated Evolution Caused by Selection of Rare Beneficial Mutations , 1996, Science.

[17]  Nick Jakobi,et al.  Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis , 1997, Adapt. Behav..

[18]  Melanie Mitchell,et al.  Finite populations induce metastability in evolutionary search , 1997 .

[19]  Adrian Thompson Evolving inherently fault-tolerant systems , 1997 .

[20]  Phil Husbands,et al.  Better Living Through Chemistry: Evolving GasNets for Robot Control , 1998, Connect. Sci..

[21]  M. Newman,et al.  Effects of selective neutrality on the evolution of molecular species , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Paul J. Layzell,et al.  Explorations in design space: unconventional electronics design through artificial evolution , 1999, IEEE Trans. Evol. Comput..

[24]  Julian Francis Miller,et al.  The Advantages of Landscape Neutrality in Digital Circuit Evolution , 2000, ICES.

[25]  Bart Naudts,et al.  A comparison of predictive measures of problem difficulty in evolutionary algorithms , 2000, IEEE Trans. Evol. Comput..

[26]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[27]  P. Husbands,et al.  Four-Dimensional Neuronal Signaling by Nitric Oxide: A Computational Analysis , 2000, The Journal of Neuroscience.

[28]  J. Crutchfield,et al.  Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? , 1999, Bulletin of mathematical biology.

[29]  L. Chao,et al.  Evolvability of an RNA virus is determined by its mutational neighbourhood , 2000, Nature.

[30]  Andrew Philippides,et al.  Nitric Oxide Signalling in Real and Artificial Neural Networks , 2000 .

[31]  C. Ofria,et al.  Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.

[32]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[33]  Marc Ebner,et al.  On neutral networks and evolvability , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[34]  C V Forst,et al.  Replication and mutation on neutral networks , 2001, Bulletin of mathematical biology.

[35]  J. Crutchfield,et al.  The Evolutionary Unfolding of Complexity , 1999, adap-org/9903001.

[36]  Peter D. Turney Increasing Evolvability Considered as a Large-Scale Trend in Evolution , 2002, ArXiv.

[37]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[38]  Andrew Philippides,et al.  Evaluating the Effectiveness of Biologically-Inspired Robot Control Networks through Operational Analysis , 2002 .

[39]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[40]  M. Huynen,et al.  Pattern generation in molecular evolution: Exploitation of the variation in RNA landscapes , 1994, Journal of Molecular Evolution.