Artificial life and evolutionary computing in machine perception

This paper introduces the foundational principles of artificial life and describes two complementary classifications of related research programs. Then, it gives an organizational definition of "minimal" life which points out some required features for synthesizing artificial systems with lifelike behaviors. After suggesting interactions between artificial life and machine perception, it emphasizes three promising research trends: evolvable algorithms for perception, collective perception and intelligence, evolvable hardware devices and sensors.

[1]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[2]  K. Eric Drexler,et al.  Biological and Nanomechanical Systems: Contrasts in Evolutionary Capacity , 1987, ALIFE.

[3]  Geoffrey North,et al.  Expanding the RNA repertoire , 1990, Nature.

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[6]  Katsunori Shimohara,et al.  Development and Evolution of Hardware Behaviors , 1995, Towards Evolvable Hardware.

[7]  S. Kauffman,et al.  Autocatalytic replication of polymers , 1986 .

[8]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[9]  S. Ullman Visual routines , 1984, Cognition.

[10]  J. Monod Le hasard et la nécessité , 1970 .

[11]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[12]  George J. Klir,et al.  Precipitation Membranes, Osmotic Growths, and Synthetic Biology , 1987, ALIFE.

[13]  V S Ramachandran,et al.  Apparent Motion of Subjective Surfaces , 1985, Perception.

[14]  F. Varela Principles of biological autonomy , 1979 .

[15]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[18]  F. Jacob,et al.  La logique du vivant. Une histoire de l'hérédité@@@La logique du vivant. Une histoire de l'heredite , 1979 .

[19]  Trevor Darrell,et al.  Evolving visual routines , 1994 .

[20]  E. Schrödinger What Is Life , 1946 .

[21]  John R. Koza,et al.  Genetic evolution and co-evolution of computer programs , 1991 .

[22]  Richard Dawkins,et al.  The Evolution of Evolvability , 1987, ALIFE.

[23]  Hugo de Garis,et al.  EVOLVABLE HARDWARE Genetic Programming of a Darwin Machine , 1993 .

[24]  Inman Harvey,et al.  Evolutionary robotics and SAGA: The case for hill crawling and tournament selection , 1994 .

[25]  Eugene H. Spafford,et al.  Computer Viruses--A Form of Artificial Life? , 1990 .

[26]  J. D. Farmer,et al.  Artificial life: The coming evolution , 1990 .

[27]  Professor Dr. Manfred Eigen,et al.  The Hypercycle , 1979, Springer Berlin Heidelberg.

[28]  Richard K. Belew,et al.  Evolving networks: using the genetic algorithm with connectionist learning , 1990 .

[29]  Craig W. Reynolds An Evolved, Vision-Based Model of Obstacle Avoidance Behavior , 1994 .

[30]  Christian Piguet,et al.  Embryological development on silicon , 1994 .

[31]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[32]  Demetri Terzopoulos,et al.  Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world , 1994 .

[33]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[34]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .