Hybrid Systems in Robotics

Robotics has provided the motivation and inspiration for many innovations in planning and control. From nonholonomic motion planning [1] to probabilistic road maps [2], from capture basins [3] to preimages [4] of obstacles to avoid, and from geometric nonlinear control [5], [6] to machine-learning methods in robotic control [7], there is a wide range of planning and control algorithms and methodologies that can be traced back to a perceived need or anticipated benefit in autonomous or semiautonomous systems.

[1]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[2]  P. Souganidis,et al.  Differential Games and Representation Formulas for Solutions of Hamilton-Jacobi-Isaacs Equations. , 1983 .

[3]  Mark W. Spong,et al.  Robust linear compensator design for nonlinear robotic control , 1985, IEEE J. Robotics Autom..

[4]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[5]  Jana Kosecka,et al.  Control of Discrete Event Systems , 1992 .

[6]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[7]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[8]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[9]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[10]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[11]  S. Capozziello,et al.  A time-dependent , 1997 .

[12]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[13]  Vijay Kumar,et al.  Formal Modeling and Analysis of Hybrid Systems: A Case Study in Multi-robot Coordination , 1999, World Congress on Formal Methods.

[14]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[15]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[16]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[17]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[18]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[19]  Alberto Bemporad,et al.  Optimization-Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems , 2000, HSCC.

[20]  Mark R. Greenstreet,et al.  Hybrid Systems: Computation and Control , 2002, Lecture Notes in Computer Science.

[21]  Patrick Saint-Pierre Hybrid Kernels and Capture Basins for Impulse Constrained Systems , 2002, HSCC.

[22]  Joel M. Esposito,et al.  Simulation and control of hybrid systems with applications to mobile robotics , 2002 .

[23]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[24]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[25]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[26]  Panos J. Antsaklis,et al.  Optimal control of switched systems based on parameterization of the switching instants , 2004, IEEE Transactions on Automatic Control.

[27]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[28]  Magnus Egerstedt,et al.  Optimal Control of Switching Surfaces in Hybrid Dynamical Systems , 2005, Discret. Event Dyn. Syst..

[29]  Antoine Girard,et al.  Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs , 2006, HSCC.

[30]  T. Murphey,et al.  Switching Rules for Decentralized Control with Simple Control Laws , 2007, 2007 American Control Conference.

[31]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[32]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[33]  Erik I. Verriest,et al.  Gradient Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical Systems , 2008 .

[34]  Ian M. Mitchell The Flexible, Extensible and Efficient Toolbox of Level Set Methods , 2008, J. Sci. Comput..

[35]  Pieter Abbeel,et al.  Apprenticeship learning for helicopter control , 2009, CACM.

[36]  Claire J. Tomlin,et al.  Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice , 2010, 2010 IEEE International Conference on Robotics and Automation.

[37]  Paulo Tabuada,et al.  Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems , 2008, IEEE Transactions on Automatic Control.

[38]  Sonia Martínez,et al.  Unicycle Coverage Control Via Hybrid Modeling , 2010, IEEE Transactions on Automatic Control.

[39]  Claire J. Tomlin,et al.  A differential game approach to planning in adversarial scenarios: A case study on capture-the-flag , 2011, 2011 IEEE International Conference on Robotics and Automation.

[40]  Claire J. Tomlin,et al.  Applications of hybrid reachability analysis to robotic aerial vehicles , 2011, Int. J. Robotics Res..

[41]  Claire J. Tomlin,et al.  Reachability-based synthesis of feedback policies for motion planning under bounded disturbances , 2011, 2011 IEEE International Conference on Robotics and Automation.

[42]  Ian M. Mitchell Scalable calculation of reach sets and tubes for nonlinear systems with terminal integrators: a mixed implicit explicit formulation , 2011, HSCC '11.