Ionomeric Polymer-Metal Composites

In certain applications, IPMC materials may offer advantages over conventional mechanical, hydraulic, or pneumatic actuators, in that IPMCs lack moving parts and require only modest operating voltages for actuation. Investigations into the mechanism of IPMC actuation and sensing seek to foster development of actuators that generate greater displacement magnitudes and forces, and sensors that are more sensitive to imposed deformations. Developers seek to exploit these materials in a number of applications including medical, space, robotic, soft microelectronic machine (MEMS), and entertainment devices. This chapter addresses the known properties of IPMC materials, their manufacture, and the methods for their characterization. In addition, we provide a summary of models proposed to account for the mechanisms of IPMC actuation and sensing, experimental results to support or invalidate these models, and concluding with a hybrid model that integrates electrical, chemical, and mechanical forces to produce results in accord with experimental observations. Finally, we highlight a few applications that have been proposed for these materials.

[1]  Pierre Millet,et al.  New solid polymer electrolyte composites for water electrolysis , 1989 .

[2]  Statistical Mechanics of Ion-Pair Association in Ionomers , 1987 .

[3]  K. Oguro,et al.  Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane–platinum composite , 1998 .

[4]  R. Duplessix,et al.  Small‐angle scattering studies of nafion membranes , 1981 .

[5]  Siavouche Nemat-Nasser,et al.  Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  S. TIMOSHENKO,et al.  An Introduction to the Theory of Elasticity: , 1936, Nature.

[7]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[8]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[9]  Toshi Takamori,et al.  An elliptic friction drive element using an ICPF actuator , 1997 .

[10]  R. Carbonell,et al.  Ionic equilibria in ion-exchange membranes: a comparison of pore model predictions with experimental results , 1992 .

[11]  M. Escoubes,et al.  Water self‐diffusion coefficient determination in an ion exchange membrane by optical measurement , 1990 .

[12]  T. Gierke,et al.  Elastic theory for ionic clustering in perfluorinated ionomers , 1982 .

[13]  Sia Nemat-Nassera,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[14]  V. Tamari Surely You're Joking, Mr. Feynman! , 1985 .

[15]  Noam Agmon,et al.  Proton Solvation and Proton Mobility , 1999 .

[16]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[17]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[18]  R. Pomès Theoretical Studies of the Grotthuss Mechanism in Biological Proton Wires , 1999 .

[19]  Yoseph Bar-Cohen,et al.  Electroactive polymer (EAP) actuators for planetary applications , 1999, Smart Structures.

[20]  Mohsen Shahinpoor,et al.  Electrically induced large-amplitude vibration and resonance characteristics on ionic polymeric membrane-metal composites artificial muscles , 1997, Smart Structures.

[21]  Siavouche Nemat-Nasser,et al.  Experimental study of Nafion- and Flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[22]  K. Oguro,et al.  Bending of Polyelectrolyte Membrane–Platinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms , 1995 .

[23]  K. Kordesch,et al.  Environmental Impact of Fuel Cell Technology , 1995 .

[24]  Mohsen Shahinpoor,et al.  The Venus Flytrap as a model for a biomimetic material with built-in sensors and actuators , 1995 .

[25]  S. Sewa,et al.  Polymer actuator driven by ion current at low voltage, applied to catheter system , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[26]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[27]  Pierre Millet,et al.  Preparation of solid polymer electrolyte composites: investigation of the ion-exchange process , 1995 .

[28]  G. Tourillon,et al.  Precipitation of Metallic Platinum into Nafion Ionomer Membranes I . Experimental Results , 1993 .

[29]  K. Osseo-Asare,et al.  Characterization of nafion® membranes by transmission electron microscopy , 1989 .

[30]  Mohsen Shahinpoor,et al.  Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method , 1999, Smart Structures.

[31]  Steven G. Wax,et al.  Electroactive polymer actuators and devices , 1999, Smart Structures.

[32]  H. Yeager,et al.  Water sorption and cation-exchange selectivity of a perfluorosulfonate ion-exchange polymer , 1980 .

[33]  Kinji Asaka,et al.  Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics , 2000 .

[34]  F. Anson,et al.  Effects of hydration on the resistances and electrochemical responses of nafioncoatings on electrodes , 1996 .

[35]  Chou Tse-Chuan,et al.  Metals and alloys bonded on solid polymer electrolyte for electrochemical reduction of pure benzaldehyde without liquid supporting electrolyte , 1993 .

[36]  J. Lindgren,et al.  FTIR study of water in cast Nafion films , 2000 .

[37]  D. Pletcher,et al.  The reduction of oxygen at a metallized membrane electrode , 1975 .

[38]  A. Hopfinger,et al.  Simple model for clustering and ionic transport in ionomer membranes , 1984 .

[39]  K. Sadeghipour,et al.  Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper , 1992 .

[40]  E. Yeager,et al.  Determination of Ionic Partial Molal Volumes from Ionic Vibration Potentials1 , 1966 .

[41]  Donald J. Leo,et al.  Manufacture and characterization of ionic polymer transducers employing non-precious metal electrodes , 2003 .

[42]  Mohsen Shahinpoor,et al.  Ion-exchange-metal composite artificial muscle actuator load characterization and modeling , 1997, Smart Structures.

[43]  Kinji Asaka,et al.  Polymer electrolyte actuator with gold electrodes , 1999, Smart Structures.

[44]  R. Nuzzo,et al.  An infrared study of the effects of hydration on cation-loaded nafion thin films , 2000 .

[45]  Jean-Louis Marignier,et al.  Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids , 1998 .

[46]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[47]  D. Segalman,et al.  Theory and application of electrically controlled polymeric gels , 1992 .

[48]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[49]  Siavouche Nemat-Nasser,et al.  Tailoring actuation of ionic polymer metal composites through cation combination , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[50]  H. Takenaka,et al.  Solid polymer electrolyte water electrolysis , 1982 .

[51]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[52]  K. Osseo-asare,et al.  Mass transfer in Nation membrane systems: Effects of ionic size and charge on selectivity , 1991 .

[53]  Mohsen Shahinpoor,et al.  Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles , 1998, Smart Structures.

[54]  Darwin G. Caldwell,et al.  “Soft” grasping using a dextrous hand , 2000 .

[55]  C. Heitner-Wirguin Recent advances in perfluorinated ionomer membranes : structure, properties and applications , 1996 .

[56]  A. Bard,et al.  Application of Nafion/Platinum Electrodes (Solid Polymer Electrolyte Structures) to Voltammetric Investigations of Highly Resistive Solutions , 1988 .

[57]  O. Bonner STUDY OF METHANESULFONATES AND TRIFLUOROMETHANESULFONATES. EVIDENCE FOR HYDROGEN BONDING TO THE TRIFLUORO GROUP , 1981 .

[58]  S. Hanna,et al.  Hydration of Nafion® studied by AFM and X-ray scattering , 2000 .

[59]  Pierre Millet,et al.  Preparation of new solid polymer electrolyte composites for water electrolysis , 1990 .

[60]  Pierre Millet Noble metal-membrane composites for electrochemical applications , 1999 .

[61]  Yoseph Bar-Cohen,et al.  Low-mass muscle actuators using electroactive polymers (EAP) , 1998, Smart Structures.

[62]  D. Caldwell Pseudomuscular actuator for use in dextrous manipulation , 1990, Medical and Biological Engineering and Computing.

[63]  Development of Electro-driven Polymer Gel/Platinum Composite Membranes. , 1999 .

[64]  Kinji Asaka,et al.  Preparation of Gold−Solid Polymer Electrolyte Composites As Electric Stimuli-Responsive Materials , 2000 .

[65]  R. Feynman Surely You''re Joking Mr , 1992 .

[66]  Mohsen Shahinpoor,et al.  Ion exchange membrane-platinum composites as electrically controllable artificial muscles , 1996, Other Conferences.

[67]  Peter S. Fedkiw,et al.  In Situ Electrode Formation on a Nafion Membrane by Chemical Platinization , 1992 .

[68]  A. Eisenberg Clustering of Ions in Organic Polymers. A Theoretical Approach , 1970 .

[69]  W. Forsman Effect of segment-segment association on chain dimensions , 1982 .

[70]  Sia Nemat-Nasser,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[71]  Mohsen Shahinpoor,et al.  Micro-Electro-Mechanics of Ionic Polymeric Gels As Electrically Controllable Artificial Muscles , 1995 .

[72]  P. Turq,et al.  Study of self-diffusion of alkali metal cations inside a Nafion membrane , 2000 .

[73]  Yoseph Bar-Cohen,et al.  Flexible low-mass devices and mechanisms actuated by electroactive polymers , 1999, Smart Structures.

[74]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[75]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[76]  H. Sodaye,et al.  Diffusion of Cs+ and Zn2+ through Nafion-117 ion exchange membrane , 1996 .

[77]  P. Läuger,et al.  Transport phenomena in membranes. , 1969, Angewandte Chemie.

[78]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[79]  R. Feynmann,et al.  Surely You''re Joking , 1983 .