Interface Stability in Solid-State Batteries

Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into high-performing batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained - in part because experimental evaluation of the interface can be very difficult. In this work, we develop a computational methodology to examine the thermodynamics of formation of resistive interfacial phases. The predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance. We calculate that thiophosphate electrolytes have especially high reactivity with high voltage cathodes and a narrow electrochemical stability window. We also find that a number of known electrolytes are not inherently stable but react in situ with the electrode to form passivating but ionically conducting barrier layers. A...

[1]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[2]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[3]  V. Thangadurai,et al.  Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). , 2007, Angewandte Chemie.

[4]  S. Ohta,et al.  Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery , 2014 .

[5]  K. Kanamura,et al.  Investigation on Electrochemical Interface between Li4Ti5O12 and Li1 + x Al x Ti2 − x ( PO4 ) 3 NASICON-Type Solid Electrolyte , 2005 .

[6]  C. V. Loon,et al.  Some chlorides with the inverse spinel structure , 1975 .

[7]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[8]  Alexander Kuhn,et al.  Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes , 2013 .

[9]  Sehee Lee,et al.  High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries , 2011 .

[10]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[11]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[12]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[13]  Anubhav Jain,et al.  Finding Nature′s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory. , 2010 .

[14]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[15]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[16]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[17]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[18]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[19]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[20]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[21]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[22]  K. Takada,et al.  All-solid-state lithium battery with LiBH4 solid electrolyte , 2013 .

[23]  G. Farrington,et al.  Ionic Conductivity in Lithium and Lithium‐Sodium Beta Alumina , 1981 .

[24]  P. Fabry,et al.  Optimization of NASICON composition for Na+ recognition , 1997 .

[25]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[26]  B. Lotsch,et al.  Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8 – exploring the Li ion dynamics in LGPS Li electrolytes † , 2013 .

[27]  R. Huggins,et al.  Ionic conductivity of alkali metal chloroaluminates , 1976 .

[28]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[29]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[32]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[33]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[34]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[35]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[36]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[37]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[38]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[39]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  G. Meyrick,et al.  Phase Transformations in Metals and Alloys , 1973 .

[42]  P. Hagenmuller,et al.  Ionic Conductivity and Phase Transition of the Bromide Spinels, Li2 − 2x M 1 + x Br4 ( M = Mg , Mn ) , 1986 .

[43]  A Battery Made from a Single Material. , 2015 .

[44]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[45]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[46]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[47]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[48]  Y. Takeda,et al.  Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd) , 1981 .

[49]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[50]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[51]  A. Schwöbel,et al.  Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission , 2015 .

[52]  G. Nazri Preparation, structure and ionic conductivity of lithium phosphide , 1989 .

[53]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[54]  G. Sahu,et al.  An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor , 2015 .

[55]  D. C. Ginnings,et al.  TEMPERATURE-CONDUCTANCE CURVES OF SOLID SALTS. III. HALIDES OF LITHIUM , 1930 .

[56]  J. D. Robertson,et al.  Nanocrystalline Li x Mn2 − y O 4 Cathodes for Solid‐State Thin‐Film Rechargeable Lithium Batteries , 1999 .

[57]  S. Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li[subscript 10±1]MP[subscript 2]X[subscript 12] (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2012 .

[58]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[59]  R. Huggins,et al.  Measurement of ionic diffusion in lithium fluoride by nuclear magnetic resonance techniques , 1966 .

[60]  C. Day,et al.  A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure , 2013 .

[61]  Sehee Lee,et al.  Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor , 2014 .

[62]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[63]  C. Cros,et al.  Structure, ionic motion and conductivity in some solid-solutions of the LiClMCl2 systems (M=Mg,V,Mn) , 1983 .

[64]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.