Deep learning for molecular generation and optimization - a review of the state of the art

In the space of only a few years, deep generative modeling has revolutionized how we think of artificial creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these successes, researchers are now applying deep generative modeling techniques to the generation and optimization of molecules—in our review we found 45 papers on the subject published in the past two years. These works point to a future where such systems will be used to generate lead molecules, greatly reducing resources spent downstream synthesizing and characterizing bad leads in the lab. In this review we survey the increasingly complex landscape of models and representation schemes that have been proposed. The four classes of techniques we describe are recursive neural networks, autoencoders, generative adversarial networks, and reinforcement learning. After first discussing some of the mathematical fundamentals of each technique, we draw high level connections and comparisons with other techniques and expose the pros and cons of each. Several important high level themes emerge as a result of this work, including the shift away from the SMILES string representation of molecules towards more sophisticated representations such as graph grammars and 3D representations, the importance of reward function design, the need for better standards for benchmarking and testing, and the benefits of adversarial training and reinforcement learning over maximum likelihood based training.

[1]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[2]  William D. Mattson,et al.  Machine Learning of Energetic Material Properties , 2018, 1807.06156.

[3]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[4]  Djork-Arné Clevert,et al.  De novo generation of hit-like molecules from gene expression signatures using artificial intelligence , 2020, Nature Communications.

[5]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[6]  R. Ramakrishnan,et al.  The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. , 2019, The Journal of chemical physics.

[7]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[8]  Sergey Nikolenko,et al.  druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. , 2017, Molecular pharmaceutics.

[9]  Koji Tsuda,et al.  ChemTS: an efficient python library for de novo molecular generation , 2017, Science and technology of advanced materials.

[10]  Gisbert Schneider,et al.  Designing Anticancer Peptides by Constructive Machine Learning , 2018, ChemMedChem.

[11]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[12]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[13]  Esben Jannik Bjerrum,et al.  Molecular Generation with Recurrent Neural Networks (RNNs) , 2017, ArXiv.

[14]  Hiroshi Kajino,et al.  Molecular Hypergraph Grammar with its Application to Molecular Optimization , 2018, ICML.

[15]  Li Li,et al.  Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds , 2018, ArXiv.

[16]  Koji Tsuda,et al.  Population-based de novo molecule generation, using grammatical evolution , 2018, 1804.02134.

[17]  Kyunghyun Cho,et al.  Conditional molecular design with deep generative models , 2018, J. Chem. Inf. Model..

[18]  Samy Bengio,et al.  Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks , 2015, NIPS.

[19]  Alán Aspuru-Guzik,et al.  The Harvard organic photovoltaic dataset , 2016, Scientific Data.

[20]  Esben Jannik Bjerrum,et al.  SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules , 2017, ArXiv.

[21]  Alán Aspuru-Guzik,et al.  Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models , 2018, Frontiers in Pharmacology.

[22]  Mikkel N. Schmidt,et al.  Machine learning-based screening of complex molecules for polymer solar cells. , 2018, The Journal of chemical physics.

[23]  George E. Dahl,et al.  Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. , 2017, Journal of chemical theory and computation.

[24]  Chris Dyer,et al.  On the State of the Art of Evaluation in Neural Language Models , 2017, ICLR.

[25]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[26]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[27]  Krzysztof Rataj,et al.  Mol-CycleGAN: a generative model for molecular optimization , 2019, Journal of Cheminformatics.

[28]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[29]  Shan Carter,et al.  Attention and Augmented Recurrent Neural Networks , 2016 .

[30]  G. V. Paolini,et al.  Quantifying the chemical beauty of drugs. , 2012, Nature chemistry.

[31]  Nikos Paragios,et al.  EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation , 2017, PeerJ.

[32]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[33]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[34]  Esben Jannik Bjerrum,et al.  DiversityNet: a collaborative benchmark for generative AI models in chemistry , 2019 .

[35]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[36]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[37]  George Karypis,et al.  Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods , 2010, J. Chem. Inf. Model..

[38]  Eric J. Martin,et al.  In silico generation of novel, drug-like chemical matter using the LSTM neural network , 2017, ArXiv.

[39]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[40]  Dragos Horvath,et al.  De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping , 2019, J. Chem. Inf. Model..

[41]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[42]  A Potential Role of Esophageal Cancer Related Gene-4 for Atrial Fibrillation , 2017, Scientific Reports.

[43]  Marc'Aurelio Ranzato,et al.  Sequence Level Training with Recurrent Neural Networks , 2015, ICLR.

[44]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[45]  J. Panteleev,et al.  Recent applications of machine learning in medicinal chemistry. , 2018, Bioorganic & medicinal chemistry letters.

[46]  Alexandre Varnek,et al.  Estimation of the size of drug-like chemical space based on GDB-17 data , 2013, Journal of Computer-Aided Molecular Design.

[47]  Maho Nakata,et al.  PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry , 2017, J. Chem. Inf. Model..

[48]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[49]  Petra Schneider,et al.  Generative Recurrent Networks for De Novo Drug Design , 2017, Molecular informatics.

[50]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Xiaolin Li,et al.  A Deep Adversarial Learning Methodology for Designing Microstructural Material Systems , 2018, Volume 2B: 44th Design Automation Conference.

[52]  Andrew G. Leach,et al.  Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence? , 2018, Drug discovery today.

[53]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[54]  Philip Bachman,et al.  Deep Reinforcement Learning that Matters , 2017, AAAI.

[55]  Jin Woo Kim,et al.  Molecular generative model based on conditional variational autoencoder for de novo molecular design , 2018, Journal of Cheminformatics.

[56]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[57]  Jan H. Jensen,et al.  A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space , 2018, Chemical science.

[58]  Marwin H. S. Segler,et al.  GuacaMol: Benchmarking Models for De Novo Molecular Design , 2018, J. Chem. Inf. Model..

[59]  Jun Xu,et al.  QBMG: quasi-biogenic molecule generator with deep recurrent neural network , 2019, Journal of Cheminformatics.

[60]  Jonas Boström,et al.  Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design , 2019, J. Chem. Inf. Model..

[61]  Alán Aspuru-Guzik,et al.  ChemOS: Orchestrating autonomous experimentation , 2018, Science Robotics.

[62]  Stephen R. Heller,et al.  InChI - the worldwide chemical structure identifier standard , 2013, Journal of Cheminformatics.

[63]  Niloy Ganguly,et al.  Designing Random Graph Models Using Variational Autoencoders With Applications to Chemical Design , 2018, ArXiv.

[64]  Wei Chen,et al.  Microstructural Materials Design Via Deep Adversarial Learning Methodology , 2018, Journal of Mechanical Design.

[65]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[66]  Bernard Pirard The quest for novel chemical matter and the contribution of computer-aided de novo design , 2011, Expert opinion on drug discovery.

[67]  Stéphane Mallat,et al.  Wavelet Scattering Regression of Quantum Chemical Energies , 2016, Multiscale Model. Simul..

[68]  R. W. Hansen,et al.  Journal of Health Economics , 2016 .

[69]  Gisbert Schneider,et al.  Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators , 2018, Communications Chemistry.

[70]  Niloy Ganguly,et al.  NeVAE: A Deep Generative Model for Molecular Graphs , 2018, AAAI.

[71]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[72]  Zois Boukouvalas,et al.  Independent Vector Analysis for Data Fusion Prior to Molecular Property Prediction with Machine Learning , 2018, ArXiv.

[73]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[74]  David Janz,et al.  Actively Learning what makes a Discrete Sequence Valid , 2017, ArXiv.

[75]  I. Muegge,et al.  Simple selection criteria for drug-like chemical matter. , 2001, Journal of medicinal chemistry.

[76]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[77]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[78]  Ole Winther,et al.  Deep Generative Models for Molecular Science , 2018, Molecular informatics.

[79]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[80]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[81]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[82]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[83]  Colin Raffel,et al.  Towards GAN Benchmarks Which Require Generalization , 2020, ICLR.

[84]  Mehdi Cherti,et al.  De novo drug design with deep generative models : an empirical study , 2017, ICLR.

[85]  Stéphane Mallat,et al.  Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities , 2017, NIPS.

[86]  Daniel C Elton,et al.  Applying machine learning techniques to predict the properties of energetic materials , 2018, Scientific Reports.

[87]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[88]  Gregor Urban,et al.  Deep learning for chemical reaction prediction , 2018 .

[89]  Richard E. Turner,et al.  Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control , 2016, ICML.

[90]  Li Li,et al.  Decoding Molecular Graph Embeddings with Reinforcement Learning , 2019, ArXiv.

[91]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[92]  D. Bojanic,et al.  Impact of high-throughput screening in biomedical research , 2011, Nature Reviews Drug Discovery.

[93]  Lorenzo Livi,et al.  Adversarial Autoencoders with Constant-Curvature Latent Manifolds , 2019, Appl. Soft Comput..

[94]  Gisbert Schneider,et al.  Recurrent Neural Network Model for Constructive Peptide Design , 2018, J. Chem. Inf. Model..

[95]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[96]  Stephen D Pickett,et al.  De Novo Molecule Design by Translating from Reduced Graphs to SMILES , 2018, J. Chem. Inf. Model..

[97]  Ekin D Cubuk,et al.  Metallic Metal-Organic Frameworks Predicted by the Combination of Machine Learning Methods and Ab Initio Calculations. , 2018, The journal of physical chemistry letters.

[98]  Hiroshi Nagamochi,et al.  Efficient enumeration of monocyclic chemical graphs with given path frequencies , 2014, Journal of Cheminformatics.

[99]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[100]  Gisbert Schneider,et al.  Automating drug discovery , 2017, Nature Reviews Drug Discovery.

[101]  Constantine Bekas,et al.  “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models† †Electronic supplementary information (ESI) available: Time-split test set and example predictions, together with attention weights, confidence and token probabilities. See DO , 2017, Chemical science.

[102]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[103]  Evgeny Putin,et al.  Adversarial Threshold Neural Computer for Molecular de Novo Design. , 2018, Molecular pharmaceutics.

[104]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[105]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[106]  Alán Aspuru-Guzik,et al.  What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery , 2015 .

[107]  Nicola De Cao,et al.  MolGAN: An implicit generative model for small molecular graphs , 2018, ArXiv.

[108]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[109]  K. Tsuda,et al.  Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies , 2018, ACS central science.

[110]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[111]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[112]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[113]  Alán Aspuru-Guzik,et al.  Reinforced Adversarial Neural Computer for de Novo Molecular Design , 2018, J. Chem. Inf. Model..

[114]  Mostapha Benhenda,et al.  ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? , 2017, ArXiv.

[115]  George M. Church,et al.  Unified rational protein engineering with sequence-only deep representation learning , 2019, bioRxiv.

[116]  Sepp Hochreiter,et al.  Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery , 2018, J. Chem. Inf. Model..

[117]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[118]  Martial Hebert,et al.  Improving Multi-Step Prediction of Learned Time Series Models , 2015, AAAI.

[119]  Yibo Li,et al.  Multi-objective de novo drug design with conditional graph generative model , 2018, Journal of Cheminformatics.

[120]  Gisbert Schneider,et al.  De Novo Design of Bioactive Small Molecules by Artificial Intelligence , 2018, Molecular informatics.

[121]  Ferenc Huszar,et al.  How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary? , 2015, ArXiv.

[122]  Kenta Hongo,et al.  Bayesian molecular design with a chemical language model , 2017, Journal of Computer-Aided Molecular Design.

[123]  Tom White,et al.  Sampling Generative Networks: Notes on a Few Effective Techniques , 2016, ArXiv.

[124]  Ernesto Callegari,et al.  A comprehensive listing of bioactivation pathways of organic functional groups. , 2005, Current drug metabolism.

[125]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[126]  Namrata Anand,et al.  Generative modeling for protein structures , 2018, NeurIPS.

[127]  He Ma,et al.  Quantitatively Evaluating GANs With Divergences Proposed for Training , 2018, ICLR.

[128]  Mario Lucic,et al.  Are GANs Created Equal? A Large-Scale Study , 2017, NeurIPS.

[129]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[130]  Leroy Cronin,et al.  How to explore chemical space using algorithms and automation , 2019, Nature Reviews Chemistry.

[131]  Dmitry Vetrov,et al.  Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. , 2018, Molecular pharmaceutics.

[132]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[133]  Frank Noé,et al.  Learning Continuous and Data-Driven Molecular Descriptors by Translating Equivalent Chemical Representations , 2018 .

[134]  Regina Barzilay,et al.  Learning Multimodal Graph-to-Graph Translation for Molecular Optimization , 2018, ICLR.

[135]  Esben Jannik Bjerrum,et al.  Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders , 2018, Biomolecules.

[136]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[137]  Mohammad Atif Faiz Afzal,et al.  Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space , 2018 .

[138]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[139]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[140]  Leroy Cronin,et al.  Designing Algorithms To Aid Discovery by Chemical Robots , 2018, ACS central science.

[141]  Xiaohua Zhai,et al.  The GAN Landscape: Losses, Architectures, Regularization, and Normalization , 2018, ArXiv.

[142]  N. Chandra,et al.  Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria , 2017, The Journal of Biological Chemistry.

[143]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[144]  Abhinav Vishnu,et al.  Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models , 2017, ArXiv.

[145]  S. Broderick,et al.  Correlative analysis of metal organic framework structures through manifold learning of Hirshfeld surfaces , 2018 .

[146]  Haruki Nakamura,et al.  Prediction of Synthetic Accessibility Based on Commercially Available Compound Databases , 2014, J. Chem. Inf. Model..

[147]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[148]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[149]  Geoffrey J. Gordon,et al.  Tuning the Molecular Weight Distribution from Atom Transfer Radical Polymerization Using Deep Reinforcement Learning , 2017, 1712.04516.

[150]  Nataliya Sokolovska,et al.  CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks , 2018, AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering.

[151]  Mohamed Ahmed,et al.  Exploring Deep Recurrent Models with Reinforcement Learning for Molecule Design , 2018, ICLR.

[152]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[153]  Thomas Blaschke,et al.  Exploring the GDB-13 chemical space using deep generative models , 2018, Journal of Cheminformatics.

[154]  Peter Ertl,et al.  Natural Product-likeness Score and Its Application for Prioritization of Compound Libraries , 2008, J. Chem. Inf. Model..

[155]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[156]  Gianni De Fabritiis,et al.  Shape-Based Generative Modeling for de Novo Drug Design , 2019, J. Chem. Inf. Model..

[157]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[158]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[159]  I. Muegge Selection criteria for drug‐like compounds , 2003, Medicinal research reviews.

[160]  Jos'e Miguel Hern'andez-Lobato,et al.  Constrained Bayesian Optimization for Automatic Chemical Design , 2017 .

[161]  Thomas F. Miller,et al.  A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules , 2019, The Journal of chemical physics.

[162]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[163]  Navdeep Jaitly,et al.  Multi-task Neural Networks for QSAR Predictions , 2014, ArXiv.

[164]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[165]  Li Li,et al.  Optimization of Molecules via Deep Reinforcement Learning , 2018, Scientific Reports.

[166]  Shahar Harel,et al.  Prototype-Based Compound Discovery Using Deep Generative Models. , 2018, Molecular pharmaceutics.

[167]  Lantao Yu,et al.  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient , 2016, AAAI.

[168]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[169]  Baskar Ganapathysubramanian,et al.  Physics-aware Deep Generative Models for Creating Synthetic Microstructures , 2018, ArXiv.

[170]  Rim Shayakhmetov,et al.  3D Molecular Representations Based on the Wave Transform for Convolutional Neural Networks. , 2018, Molecular pharmaceutics.

[171]  D. Sculley,et al.  Winner's Curse? On Pace, Progress, and Empirical Rigor , 2018, ICLR.

[172]  Alán Aspuru-Guzik,et al.  Closed-loop discovery platform integration is needed for artificial intelligence to make an impact in drug discovery , 2018, Expert opinion on drug discovery.

[173]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[174]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[175]  Jennifer M. Elward,et al.  Enriched optimization of molecular properties under constraints: an electrochromic example , 2018 .

[176]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[177]  Mark Fuge,et al.  Synthesizing Designs With Inter-Part Dependencies Using Hierarchical Generative Adversarial Networks , 2018, Volume 2A: 44th Design Automation Conference.

[178]  Zois Boukouvalas,et al.  Development of ICA and IVA Algorithms with Application to Medical Image Analysis , 2018, 1801.08600.