Multigait soft robot

This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.

[1]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[2]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  R. B. Clark,et al.  Factors Controlling the Change of Shape of Certain Nemertean and Turbellarian Worms , 1958 .

[4]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[5]  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[6]  P. Perona,et al.  Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..

[7]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[8]  Milind Tambe,et al.  Towards Flexible Teamwork , 1997, J. Artif. Intell. Res..

[9]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[10]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[11]  Okyay Kaynak,et al.  Stabilizing and robustifying the learning mechanisms of artificial neural networks in control engineering applications , 2000, Int. J. Intell. Syst..

[12]  M. Elphick,et al.  Neural control of muscle relaxation in echinoderms. , 2001, The Journal of experimental biology.

[13]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[14]  J. Bontsema,et al.  An Autonomous Robot for Harvesting Cucumbers in Greenhouses , 2002, Auton. Robots.

[15]  Alfred C. Rufer,et al.  JOE: a mobile, inverted pendulum , 2002, IEEE Trans. Ind. Electron..

[16]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[17]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[18]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[19]  Dana Mackenzie Shape Shifters Tread a Daunting Path Toward Reality , 2003, Science.

[20]  Steven Vogel,et al.  Comparative Biomechanics: Life's Physical World , 2003 .

[21]  Christopher D. Rahn,et al.  Design of an artificial muscle continuum robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[22]  Rasit Köker,et al.  Reliability-based approach to the inverse kinematics solution of robots using Elman's networks , 2005, Eng. Appl. Artif. Intell..

[23]  M. Apuzzo,et al.  Robotic virtual endoscopy: development of a multidirectional rigid endoscope. , 2006, Neurosurgery.

[24]  S. Slobounov,et al.  Alteration of postural responses to visual field motion in mild traumatic brain injury. , 2006, Neurosurgery.

[25]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  M. Apuzzo,et al.  Robotic Virtual Endoscopy: Development of a Multidirectional Rigid Endoscope , 2006, Neurosurgery.

[27]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[28]  Auke Jan Ijspeert,et al.  Self-organized adaptive legged locomotion in a compliant quadruped robot , 2008, Auton. Robots.

[29]  Howie Choset,et al.  Parameterized and Scripted Gaits for Modular Snake Robots , 2009, Adv. Robotics.

[30]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[31]  Robert J. Wood,et al.  Biologically-inspired locomotion of a 2g hexapod robot , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[33]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[34]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.