Depth Sensing Using Geometrically Constrained Polarization Normals

Analyzing the polarimetric properties of reflected light is a potential source of shape information. However, it is well-known that polarimetric information contains fundamental shape ambiguities, leading to an underconstrained problem of recovering 3D geometry. To address this problem, we use additional geometric information, from coarse depth maps, to constrain the shape information from polarization cues. Our main contribution is a framework that combines surface normals from polarization (hereafter polarization normals) with an aligned depth map. The additional geometric constraints are used to mitigate physics-based artifacts, such as azimuthal ambiguity, refractive distortion and fronto-parallel signal degradation. We believe our work may have practical implications for optical engineering, demonstrating a new option for state-of-the-art 3D reconstruction.

[1]  Katsushi Ikeuchi,et al.  Measurement of surface orientations of transparent objects using polarization in highlight , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  Cong Phuoc Huynh,et al.  Shape and Refractive Index from Single-View Spectro-Polarimetric Images , 2012, International Journal of Computer Vision.

[3]  Ramesh Raskar,et al.  Polarized 3D: synthesis of polarization and depth cues for enhanced 3D sensing , 2015, SIGGRAPH Studio.

[4]  David J. Kriegman,et al.  Shape from Varying Illumination and Viewpoint , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Howard Schultz,et al.  Retrieval of short ocean wave slope using polarimetric imaging , 2008 .

[6]  Fabrice Meriaudeau,et al.  Polarization imaging applied to 3D reconstruction of specular metallic surfaces , 2005, IS&T/SPIE Electronic Imaging.

[7]  Quan Pan,et al.  Multi-band Polarization Imaging and Applications , 2016, Advances in Computer Vision and Pattern Recognition.

[8]  Alfred M. Bruckstein,et al.  RGBD-fusion: Real-time high precision depth recovery , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Masashi Baba,et al.  Polarization-Based Surface Normal Estimation of Black Specular Objects from Multiple Viewpoints , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[10]  Christophe Stolz,et al.  Short review of polarimetric imaging based method for 3D measurements , 2016, SPIE Photonics Europe.

[11]  Lawrence B. Wolff,et al.  Polarization vision: a new sensory approach to image understanding , 1997, Image Vis. Comput..

[12]  Andrew M. Wallace,et al.  Improving Depth Image Acquisition Using Polarized Light , 1999, International Journal of Computer Vision.

[13]  Alyosha Molnar,et al.  Dual light field and polarization imaging using CMOS diffractive image sensors. , 2015, Optics letters.

[14]  Shree K. Nayar,et al.  Generalized mosaicing: polarization panorama , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[16]  Katsushi Ikeuchi,et al.  Transparent surface modeling from a pair of polarization images , 2004 .

[17]  Jason Lawrence,et al.  A photometric approach for estimating normals and tangents , 2008, ACM Trans. Graph..

[18]  Achuta Kadambi,et al.  Coded aperture compressive 3-D LIDAR , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Pieter Peers,et al.  Estimating Surface Normals from Spherical Stokes Reflectance Fields , 2012, ECCV Workshops.

[20]  Pieter Peers,et al.  Estimating Specular Roughness and Anisotropy from Second Order Spherical Gradient Illumination , 2009, Comput. Graph. Forum.

[21]  Yoav Y. Schechner Self-Calibrating Imaging Polarimetry , 2015, 2015 IEEE International Conference on Computational Photography (ICCP).

[22]  Edwin R. Hancock,et al.  A comprehensive polarisation model for surface orientation recovery , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[23]  Martin Buss,et al.  Comparison of surface normal estimation methods for range sensing applications , 2009, 2009 IEEE International Conference on Robotics and Automation.

[24]  Yoav Y. Schechner,et al.  Active Polarization Descattering , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Stephen Lin,et al.  Shading-Based Shape Refinement of RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Zhe Wu,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Venu Madhav Govindu,et al.  High Quality Photometric Reconstruction Using a Depth Camera , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Paul E. Debevec,et al.  Multiview face capture using polarized spherical gradient illumination , 2011, ACM Trans. Graph..

[29]  MOHIT GUPTA,et al.  Phasor Imaging , 2015, ACM Trans. Graph..

[30]  Diego F. Nehab,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, SIGGRAPH 2005.

[31]  Edwin R. Hancock,et al.  Combinatorial Surface Integration , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[32]  Qing Zhang,et al.  Edge-preserving photometric stereo via depth fusion , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Daniel Snow,et al.  Shape and albedo from multiple images using integrability , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Katsushi Ikeuchi,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Bi-polynomial Modeling of Low-frequency Reflectances , 2022 .

[35]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[36]  Ramesh Raskar,et al.  Polarized 3D: High-Quality Depth Sensing with Polarization Cues , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[37]  Katsushi Ikeuchi,et al.  Photometric Stereo Using Internet Images , 2014, 2014 2nd International Conference on 3D Vision.

[38]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[39]  William A. P. Smith,et al.  Linear Depth Estimation from an Uncalibrated, Monocular Polarisation Image , 2016, ECCV.

[40]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[41]  Ramesh Raskar,et al.  A Light Transport Model for Mitigating Multipath Interference in TOF Sensors , 2015, ArXiv.

[42]  Dinesh K. Pai,et al.  Polarization Multiplexing and Demultiplexing for Appearance-Based Modeling , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Shahram Izadi,et al.  Real-time shading-based refinement for consumer depth cameras , 2014, ACM Trans. Graph..

[44]  Shree K. Nayar,et al.  Instant dehazing of images using polarization , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[45]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[46]  Yasuyuki Matsushita,et al.  High-quality shape from multi-view stereo and shading under general illumination , 2011, CVPR 2011.

[47]  Ronen Basri,et al.  Photometric stereo with general, unknown lighting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[48]  Abhijeet Ghosh,et al.  Circularly polarized spherical illumination reflectometry , 2010, SIGGRAPH 2010.

[49]  Hans-Peter Seidel,et al.  A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging , 2013, ACM Trans. Graph..

[50]  Ravi Ramamoorthi,et al.  Reflectance sharing: predicting appearance from a sparse set of images of a known shape , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  John Oliensis,et al.  Uniqueness in shape from shading , 1991, International Journal of Computer Vision.

[52]  Katsushi Ikeuchi,et al.  Polarization-based inverse rendering from a single view , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[53]  Shree K. Nayar,et al.  Separation of Reflection Components Using Color and Polarization , 1997, International Journal of Computer Vision.

[54]  Edwin R. Hancock,et al.  Multi-view surface reconstruction using polarization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[55]  Tai-Pang Wu,et al.  Normal Estimation of a Transparent Object Using a Video , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  SeidelHans-Peter,et al.  A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging , 2013 .

[57]  Cong Phuoc Huynh,et al.  Imaging Spectroscopy for Scene Analysis , 2012, Advances in Computer Vision and Pattern Recognition.

[58]  Matthew Kitchin,et al.  Long-wave infrared polarimetric cluster-based vehicle detection. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Stefan Rahmann,et al.  Reconstruction of specular surfaces using polarization imaging , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[60]  Gary A. Atkinson,et al.  Recovery of surface orientation from diffuse polarization , 2006, IEEE Transactions on Image Processing.

[61]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[62]  Roberto Cipolla,et al.  Multiview Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Rin-ichiro Taniguchi,et al.  Shape and light directions from shading and polarization , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Katsushi Ikeuchi,et al.  Transparent surface modeling from a pair of polarization images , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Matthew O'Toole,et al.  Temporal frequency probing for 5D transient analysis of global light transport , 2014, ACM Trans. Graph..

[66]  Hans-Peter Seidel,et al.  Polarization and Phase-Shifting for 3D Scanning of Translucent Objects , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Simon Fuhrmann,et al.  Photometric stereo for outdoor webcams , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[69]  Li Zhang,et al.  Shape and motion under varying illumination , 2003, IEEE International Conference on Computer Vision.

[70]  In-So Kweon,et al.  High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination , 2013, 2013 IEEE International Conference on Computer Vision.