Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes
暂无分享,去创建一个
Giorgio Battistelli | Angelo Alessandri | Marco Baglietto | A. Alessandri | M. Baglietto | G. Battistelli
[1] James Ting-Ho Lo,et al. Synthetic approach to optimal filtering , 1994, IEEE Trans. Neural Networks.
[2] M. Sanguineti,et al. Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems , 2002 .
[3] D. Mayne,et al. Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..
[4] A. Jazwinski. Limited memory optimal filtering , 1968 .
[5] Giorgio Battistelli,et al. Receding-horizon estimation for discrete-time linear systems , 2003, IEEE Trans. Autom. Control..
[6] Jay H. Lee,et al. Constrained linear state estimation - a moving horizon approach , 2001, Autom..
[7] Jun Yan,et al. Incorporating state estimation into model predictive control and its application to network traffic control , 2005, Autom..
[8] Yoram Bresler,et al. The stability of nonlinear least squares problems and the Cramer-Rao bound , 2000, IEEE Trans. Signal Process..
[9] Graham C. Goodwin,et al. Lagrangian duality between constrained estimation and control , 2005, Autom..
[10] M. Alamir. Optimization based non-linear observers revisited , 1999 .
[11] Giorgio Battistelli,et al. On estimation error bounds for receding-horizon filters using quadratic boundedness , 2004, IEEE Transactions on Automatic Control.
[12] Robert R. Bitmead,et al. Conditions for stability of the extended Kalman filter and their application to the frequency tracking problem , 1995, Math. Control. Signals Syst..
[13] Thomas Parisini,et al. A neural state estimator with bounded errors for nonlinear systems , 1999, IEEE Trans. Autom. Control..
[14] David Q. Mayne,et al. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..
[15] Thomas Parisini,et al. Neural approximators for nonlinear finite-memory state estimation , 1997 .
[16] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[17] G. Zimmer. State observation by on-line minimization , 1994 .
[18] David Q. Mayne,et al. Constrained model predictive control: Stability and optimality , 2000, Autom..
[19] Manfred Morari,et al. Moving horizon estimation for hybrid systems , 2002, IEEE Trans. Autom. Control..
[20] Thomas Parisini,et al. Distributed-information neural control: the case of dynamic routing in traffic networks , 2001, IEEE Trans. Neural Networks.
[21] Andrew R. Barron,et al. Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.
[22] John M. Fitts. On the observability of non-linear systems with applications to non-linear regression analysis , 1972, Inf. Sci..
[23] Richard J. Mammone,et al. Artificial neural networks for speech and vision , 1994 .
[24] Konrad Reif,et al. Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..
[25] Mazen Alamir,et al. Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..
[26] Gibson,et al. A steady-state optimal control problem , 1976 .
[27] J. Grizzle,et al. Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..
[28] A. Richards,et al. Robust model predictive control with imperfect information , 2005, Proceedings of the 2005, American Control Conference, 2005..
[29] Giorgio Battistelli,et al. Robust receding-horizon state estimation for uncertain discrete-time linear systems , 2005, Syst. Control. Lett..
[30] Marios M. Polycarpou,et al. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems , 2002, IEEE Trans. Autom. Control..
[31] Tamás Vinkó,et al. A comparison of complete global optimization solvers , 2005, Math. Program..
[32] Giorgio Battistelli,et al. Receding-horizon estimation for switching discrete-time linear systems , 2005, IEEE Transactions on Automatic Control.