Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices
暂无分享,去创建一个
[1] Jr. A. Willson. A stability criterion for nonautonomous difference equations with application to the design of a digital FSK oscillator , 1974 .
[2] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[3] Marino Zennaro,et al. The Analysis and the Representation of Balanced Complex Polytopes in 2D , 2009, Found. Comput. Math..
[4] Paul H. Siegel,et al. On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[5] Fabian R. Wirth,et al. Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..
[6] Vincent D. Blondel,et al. On the finiteness property for rational matrices , 2007 .
[7] L. Elsner. The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .
[8] Mau-Hsiang Shih,et al. Simultaneous Schur stability , 1999 .
[9] Robert Shorten,et al. Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..
[10] Vincent D. Blondel,et al. Overlap-free words and spectra of matrices , 2007, Theor. Comput. Sci..
[11] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[12] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[13] T. Andô,et al. Simultaneous Contractibility , 1998 .
[14] J. Lagarias,et al. The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .
[15] M. Zennaro,et al. Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .
[16] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[17] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[18] Nicola Guglielmi,et al. On the asymptotic properties of a family of matrices , 2001 .
[19] Vincent D. Blondel,et al. An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..
[20] Victor S. Kozyakin,et al. On the computational aspects of the theory of joint spectral radius , 2009 .
[21] Y. Nesterov,et al. On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .
[22] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[23] M. Zennaro,et al. Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .
[24] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[25] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[26] Nikita Sidorov,et al. An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.
[27] Mau-Hsiang Shih,et al. Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .
[28] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[29] U. Reif,et al. C1-continuity of the generalized four-point scheme , 2009 .
[30] Jean Berstel,et al. Growth of repetition-free words -- a review , 2005, Theor. Comput. Sci..
[31] A. Jadbabaie,et al. Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.
[32] Nicola Guglielmi,et al. An algorithm for finding extremal polytope norms of matrix families , 2008 .
[33] Nicola Guglielmi,et al. On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.
[34] R. Jungers. The Joint Spectral Radius: Theory and Applications , 2009 .
[35] Nicola Guglielmi,et al. Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..
[36] G. Alexits. Approximation theory , 1983 .
[37] R. Shorten,et al. Quadratic and Copositive Lyapunov Functions and the Stability of Positive Switched Linear Systems , 2007, 2007 American Control Conference.
[38] J. Vandergraft. Spectral properties of matrices which have invariant cones , 1968 .
[39] Nicola Guglielmi,et al. Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..
[40] Vincent D. Blondel,et al. On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.
[41] I. Daubechies,et al. Sets of Matrices All Infinite Products of Which Converge , 1992 .
[42] Carla Manni,et al. Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas , 2011 .
[43] M. Zennaro,et al. On the limit products of a family of matrices , 2003 .
[44] M. Zennaro,et al. On the asymptotic regularity of a family of matrices , 2012 .
[45] V. Protasov. The generalized joint spectral radius. A geometric approach , 1997 .
[46] G. Gripenberg. COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .
[47] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[48] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[49] G. Rota,et al. A note on the joint spectral radius , 1960 .
[50] J. Mairesse,et al. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .
[51] R. M. Jungers,et al. Counterexamples to the Complex Polytope Extremality Conjecture , 2009, SIAM J. Matrix Anal. Appl..