Conic nearest neighbor queries and approximate Voronoi diagrams

Given a cone C and a set S of n points in R d , we want to preprocess S into a data structure so that we can find fast an approximate nearest neighbor to a query point q with respect to the points of S contained in the translation of C with apex at q.We develop an approximate conic Voronoi diagram of O ? ( n / e d ) size that supports conic nearest neighbor queries in O ( log ? ( n / e ) ) time. Our preprocessing uses only the well-separated pair decomposition and a compressed quadtree. Previous results were restricted to simplicial cones and achieved polylogarithmic or higher query times.By increasing space to O ? ( n / e 2 d ) our data structure further supports queries for any cone direction and angle.

[1]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[2]  Sariel Har-Peled A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[3]  David M. Mount,et al.  A dynamic data structure for approximate range searching , 2010, SCG.

[4]  Ronitt Rubinfeld,et al.  Approximating the Weight of the Euclidean Minimum Spanning Tree in Sublinear Time , 2005, SIAM J. Comput..

[5]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[6]  Joachim Gudmundsson,et al.  Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams , 2017, Algorithmica.

[7]  Sunil Arya,et al.  Linear-size approximate voronoi diagrams , 2002, SODA '02.

[8]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[9]  Michael T. Goodrich,et al.  Balanced aspect ratio trees: combining the advantages of k-d trees and octrees , 1999, SODA '99.

[10]  S. Meiser,et al.  Point Location in Arrangements of Hyperplanes , 1993, Inf. Comput..

[11]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[12]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[13]  Stefan Funke,et al.  Smooth-surface reconstruction in near-linear time , 2002, SODA '02.

[14]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[15]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[16]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[17]  S. Rao Kosaraju,et al.  Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.

[18]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[19]  Tamal K. Dey,et al.  Shape Dimension and Approximation from Samples , 2002, SODA '02.

[20]  Joachim Giesen,et al.  Shape dimension and intrinsic metric from samples of manifolds with high co-dimension , 2003, SCG '03.

[21]  Lars Arge,et al.  Indexing Moving Points , 2003, J. Comput. Syst. Sci..

[22]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[23]  Guilherme Dias da Fonseca,et al.  Polytope approximation and the Mahler volume , 2012, SODA.

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .