Deep Learning with Sets and Point Clouds

We introduce a simple permutation equivariant layer for deep learning with set structure.This type of layer, obtained by parameter-sharing, has a simple implementation and linear-time complexity in the size of each set. We use deep permutation-invariant networks to perform point-could classification and MNIST-digit summation, where in both cases the output is invariant to permutations of the input. In a semi-supervised setting, where the goal is make predictions for each instance within a set, we demonstrate the usefulness of this type of layer in set-outlier detection as well as semi-supervised learning with clustering side-information.

[1]  M. Kendall,et al.  Symmetric Function and Allied Tables. , 1967 .

[2]  B. E. Cooper,et al.  Symmetric Function and Allied Tables. , 1967 .

[3]  M. S. Roberts Galactic astronomy. , 1981, Science.

[4]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[5]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[6]  Christoph Goller,et al.  Learning task-dependent distributed representations by backpropagation through structure , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[7]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[8]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[9]  Chiew-Lan Tai,et al.  A mesh reconstruction algorithm driven by an intrinsic property of a point cloud , 2004, Comput. Aided Des..

[10]  Zhi-Hua Zhou,et al.  Multi-instance learning by treating instances as non-I.I.D. samples , 2008, ICML '09.

[11]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[12]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  Barnabás Póczos,et al.  Nonparametric kernel estimators for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[15]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[17]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[18]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[19]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[20]  Claire Cardie,et al.  Deep Recursive Neural Networks for Compositionality in Language , 2014, NIPS.

[21]  Barnabás Póczos,et al.  FuSSO: Functional Shrinkage and Selection Operator , 2013, AISTATS.

[22]  Xu Chen,et al.  Unsupervised Deep Haar Scattering on Graphs , 2014, NIPS.

[23]  E. Rykoff,et al.  redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.

[24]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26]  Danica J. Sutherland,et al.  DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING , 2015, 1509.05409.

[27]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[28]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[29]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[30]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[34]  Zhichao Zhou,et al.  DeepPano: Deep Panoramic Representation for 3-D Shape Recognition , 2015, IEEE Signal Processing Letters.

[35]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[36]  Donald F. Towsley,et al.  Diffusion-Convolutional Neural Networks , 2015, NIPS.

[37]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[38]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[39]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[40]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[41]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[42]  Xinyun Chen Under Review as a Conference Paper at Iclr 2017 Delving into Transferable Adversarial Ex- Amples and Black-box Attacks , 2016 .

[43]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[44]  Barnabás Póczos,et al.  Nonparametric distribution regression applied to sensor modeling , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[45]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[46]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[47]  Arthur Gretton,et al.  Learning Theory for Distribution Regression , 2014, J. Mach. Learn. Res..

[48]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[49]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[50]  Hendrik Blockeel,et al.  Multi-Instance Learning , 2017, Encyclopedia of Machine Learning and Data Mining.