Autonomous Robots 16, 49-79, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

We propose a new method to program robots based on Bayesian inference and learning. It is called BRP for Bayesian Robot Programming. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of BRP are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics.

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[3]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Sebastian Thrun,et al.  Towards programming tools for robots that integrate probabilistic computation and learning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Stanley A. Schneider,et al.  ControlShell: A Software Architecture for Complex Electromechanical Systems , 1998, Int. J. Robotics Res..

[7]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[8]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[9]  J. A. Robinson,et al.  Logic, form and function , 1979 .

[10]  R. T. Cox The Algebra of Probable Inference , 1962 .

[11]  Olivier Aycard Architecture de contrôle pour robot mobile en environnement intérieur structuré , 1998 .

[12]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[13]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[14]  Michael I. Jordan,et al.  Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..

[15]  Julien Diard,et al.  A Bayesian framework for robotic programming , 2001 .

[16]  C. R. Smith,et al.  Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .

[17]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[18]  Thomas C. Henderson,et al.  Instrumented Sensor System Architecture , 1998, Int. J. Robotics Res..

[19]  Rolf Bernhardt,et al.  Robot Calibration , 1993 .

[20]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[21]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[22]  Joseph Y. Halpern A Counterexample to Theorems of Cox and Fine , 1996, AAAI/IAAI, Vol. 2.

[23]  M. C. Garrido,et al.  Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians , 1998, J. Artif. Intell. Res..

[24]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[25]  Claudine Robert AN ENTROPY CONCENTRATION THEOREM: APPLICATIONS IN ARTIFICIAL INTELLIGENCE AND DESCRIPTIVE STATISTICS , 1990 .

[26]  Ronen I. Brafman,et al.  Applications of a logic of knowledge to motion planning under uncertainty , 1997, JACM.

[27]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Machine Learning.

[28]  Pierre Bessière,et al.  Using Bayesian Programming for multi-sensor multi-target tracking in automotive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[29]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[30]  Michael Beetz,et al.  Learning Structured Reactive Navigation Plans from Executing MDP policies , 2001 .

[31]  L. Kaelbling,et al.  Toward Hierachical Decomposition for Planning in Uncertain Environments , 2001 .

[32]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[33]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  Simon Kasif,et al.  Logarithmic-Time Updates and Queries in Probabilistic Networks , 1995, UAI.

[35]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[36]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[37]  Michael I. Jordan,et al.  Variational Probabilistic Inference and the QMR-DT Network , 2011, J. Artif. Intell. Res..

[38]  Julio Rosenblatt,et al.  Optimal Selection of Uncertain Actions by Maximizing Expected Utility , 2000, Auton. Robots.

[39]  Pierre Bessière,et al.  A robotic CAD system using a Bayesian framework , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[40]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[41]  A. Mohammad-Djafari,et al.  Maximum Entropy and Bayesian Methods , 1993 .

[42]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[43]  Pierre Bessière,et al.  Chasing an elusive target with a mobile robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[44]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[45]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[46]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[47]  P. Maes How to Do the Right Thing , 1989 .

[48]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[49]  Ève Coste-Manière,et al.  The ORCCAD Architecture , 1998, Int. J. Robotics Res..

[50]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[51]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[52]  David J. C. Mackay,et al.  Introduction to Monte Carlo Methods , 1998, Learning in Graphical Models.

[53]  C. Ray Smith,et al.  Maximum‐Entropy and Bayesian Methods in Science and Engineering Vol. 1, Foundations Vol. 2, Applications , 1991 .

[54]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[55]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[56]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[57]  Julien Diard,et al.  Bayesian Programming and Hierarchical Learning in Robotics , 2000 .

[58]  Pierre Bessière,et al.  The design and implementation of a Bayesian CAD modeler for robotic applications , 2001, Adv. Robotics.

[59]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[60]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[61]  Stuart J. Russell,et al.  Reinforcement Learning with Hierarchies of Machines , 1997, NIPS.

[62]  Leslie Pack Kaelbling,et al.  Learning models for robot navigation , 1999 .

[63]  Bruce Randall Donald,et al.  A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty , 1987, Artif. Intell..

[64]  Kurt Konolige,et al.  Improved Occupancy Grids for Map Building , 1997, Auton. Robots.

[65]  Gregory M. Provan,et al.  Query DAGs: A practical paradigm for implementing belief-network inference , 1996, UAI.

[66]  Joseph Y. Halpern Cox's Theorem Revisited (technical addendum) , 1999, J. Artif. Intell. Res..

[67]  Stergios I. Roumeliotis,et al.  Collective localization: a distributed Kalman filter approach to localization of groups of mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[68]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[69]  E. Jaynes Probability theory : the logic of science , 2003 .