Anatomical pathways that link perception and action.

[1]  A. Kölliker Nervensystem des Menschen und der Thiere , 1896 .

[2]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[3]  A. Hill The Basis of Sensation: the Action of the Sense Organs , 1929, Nature.

[4]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of curved lines. , 1933 .

[5]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[6]  R. Guillery Degeneration in the hypothalamic connexions of the albino rat. , 1957, Journal of anatomy.

[7]  E. Perl,et al.  Cutaneous projection to second-order neurons of the dorsal column system. , 1962, Journal of neurophysiology.

[8]  V. Mountcastle,et al.  THE RELATION OF THALAMIC CELL RESPONSE TO PERIPHERAL STIMULI VARIED OVER AN INTENSIVE CONTINUUM. , 1963, Journal of neurophysiology.

[9]  L. Festinger,et al.  Efference and the conscious experience of perception , 1967 .

[10]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.

[11]  R. Kalil,et al.  Corticofugal influence on activity of lateral geniculate neurons in the cat. , 1970, Journal of neurophysiology.

[12]  K. Berkley Different targets of different neurons in nucleus gracilis of the cat , 1975, The Journal of comparative neurology.

[13]  J. Lund,et al.  Monkey retinal ganglion cells: Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique , 1975, The Journal of comparative neurology.

[14]  J. Cruce An autoradiographic study of the descending connections of the mammillary nuclei of the rat , 1977, The Journal of comparative neurology.

[15]  A. G. Brown,et al.  The morphology of spinocervical tract neurones revealed by intracellular injection of horseradish peroxidase (cat) , 1977, The Journal of physiology.

[16]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[17]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[19]  H. Kuypers,et al.  Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey , 1978, Brain Research.

[20]  G. Bishop,et al.  Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum , 1978, The Journal of comparative neurology.

[21]  A. Vallbo,et al.  Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. , 1979, Physiological reviews.

[22]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[23]  L. Kruger,et al.  An axonal transport study of the ascending projection of medial lemniscal neurons in the rat , 1980, The Journal of comparative neurology.

[24]  K. Berkley,et al.  Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: An anatomical study using two different double-labeling techniques , 1980, Brain Research.

[25]  I. Thompson,et al.  Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique , 1980, Neuroscience Letters.

[26]  H. Wässle,et al.  The retinal projection to the superior colliculus in the cat: A quantitative study with HRP , 1980, The Journal of comparative neurology.

[27]  P. D. Spear,et al.  Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons , 1981, Brain Research.

[28]  A. G. Brown,et al.  Direct observations on the contacts made between Ia afferent fibres and alpha‐motoneurones in the cat's lumbosacral spinal cord. , 1981, The Journal of physiology.

[29]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[30]  K. Berkley Spatial relationships between the terminations of somatic sensory motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon , 1983, The Journal of comparative neurology.

[31]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[32]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R. Linden,et al.  Massive retinotectal projection in rats , 1983, Brain Research.

[34]  C. Henkel Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: An autoradiographic and horseradish peroxidase study , 1983, Brain Research.

[35]  A. Cowey,et al.  Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey , 1984, Neuroscience.

[36]  M. Bull,et al.  Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. , 1984, Somatosensory research.

[37]  J. Whitley,et al.  Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat , 1984, The Journal of comparative neurology.

[38]  R. W. Rodieck,et al.  Central projections of cat retinal ganglion cells , 1985, The Journal of comparative neurology.

[39]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[40]  W. Precht,et al.  Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase , 1986, The Journal of comparative neurology.

[41]  M. Sur,et al.  Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. , 1987, Journal of neurophysiology.

[42]  Y. Shinoda,et al.  Morphology of single neurones in the cerebello-rubrospinal system , 1988, Behavioural Brain Research.

[43]  J. Norden,et al.  Light-microscopic immunolocalization of the growth- and plasticity-associated protein GAP-43 in the developing rat brain. , 1988, Brain research.

[44]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[45]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[46]  L M Chalupa,et al.  Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[48]  S. Biffo,et al.  B‐50/GAP43 Expression Correlates with Process Outgrowth in the Embryonic Mouse Nervous System , 1990, The European journal of neuroscience.

[49]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[50]  A. Leventhal The neural basis of visual function , 1991 .

[51]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[52]  P. Goldman-Rakic,et al.  Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey , 1991, The Journal of comparative neurology.

[53]  S Shipp,et al.  Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex , 1991, Visual Neuroscience.

[54]  B. V. Updyke,et al.  Corticotectal projections in the cat: Anterograde transport studies of twenty‐five cortical areas , 1992, The Journal of comparative neurology.

[55]  G. Schneider,et al.  Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon , 1992, Brain Research.

[56]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[57]  E. Mugnaini,et al.  Input from the inferior colliculus to medial olivocochlear neurons in the rat: A double label study with PHA-L and cholera toxin , 1993, Hearing Research.

[58]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[59]  L. Optican,et al.  Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons , 1994, Visual Neuroscience.

[60]  M. Deschenes,et al.  Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons , 1994, Brain Research.

[61]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[62]  J. Kapfhammer,et al.  Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice , 1995, Cell.

[63]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[65]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[66]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[67]  S. Sherman,et al.  Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin , 1995, The Journal of comparative neurology.

[68]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  P. C. Murphy,et al.  Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[71]  Aryeh Routtenberg,et al.  GAP-43: an intrinsic determinant of neuronal development and plasticity , 1997, Trends in Neurosciences.

[72]  P. Caroni Intrinsic neuronal determinants that promotes axonal sprouting and elongation , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[73]  S. Sherman,et al.  Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons , 1998, The Journal of comparative neurology.

[74]  J. Taube,et al.  Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity , 1998, The Journal of Neuroscience.

[75]  J. Norden,et al.  Up-regulation of fast-axonally transported proteins in retinal ganglion cells of adult rats with optic-peroneal nerve grafts. , 1998, Brain research. Molecular brain research.

[76]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[77]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[78]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. , 1998, Neuroreport.

[79]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[81]  S. Shore,et al.  Sources of input to the cochlear granule cell region in the guinea pig , 1998, Hearing Research.

[82]  D. Sretavan,et al.  Retinal Ganglion Cell Axon Progression from the Optic Chiasm to Initiate Optic Tract Development Requires Cell Autonomous Function of GAP-43 , 1998, The Journal of Neuroscience.

[83]  K Matsuda,et al.  Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. , 1999, Cerebral cortex.

[84]  W. Willis,et al.  Branching and/or collateral projections of spinal dorsal horn neurons , 1999, Brain Research Reviews.

[85]  F. R. Nodal,et al.  Projections of cochlear root neurons, sentinels of the rat auditory pathway , 1999, The Journal of comparative neurology.

[86]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[87]  P. C. Murphy,et al.  Comparison of the Laminar Distribution of Input from Areas 17 and 18 of the Visual Cortex to the Lateral Geniculate Nucleus of the Cat , 2000, The Journal of Neuroscience.

[88]  W. C. Hall,et al.  Contribution of superficial layer neurons to premotor bursts in the superior colliculus. , 2000, Journal of neurophysiology.

[89]  K. Rockland,et al.  Feedback connections from area MT of the squirrel monkey to areas V1 and V2 , 2000, The Journal of comparative neurology.

[90]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[91]  J. K. Harting,et al.  Projections from the rostral pole of the inferior colliculus to the cat superior colliculus , 2000, Brain Research.

[92]  S Shipp,et al.  Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: A dual model of retinal and cortical topographies , 2001, The Journal of comparative neurology.

[93]  R W Guillery,et al.  Connections of higher order visual relays in the thalamus: A study of corticothalamic pathways in cats , 2001, The Journal of comparative neurology.

[94]  P H Schiller,et al.  Look and see: how the brain moves your eyes about. , 2001, Progress in brain research.

[95]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[96]  David Fitzpatrick,et al.  Central Projections of Retinal Ganglion Cells , 2001 .

[97]  Ann M. Graybiel,et al.  A Genetic Basis for Obsessive Grooming , 2002, Neuron.

[98]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[99]  John H. R. Maunsell,et al.  Dynamics of neuronal responses in macaque MT and VIP during motion detection , 2002, Nature Neuroscience.

[100]  R. Guillery,et al.  The thalamus as a monitor of motor outputs. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[101]  R W Guillery,et al.  The role of the thalamus in the flow of information to the cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[102]  M. Bickford,et al.  Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function , 2002, The Journal of comparative neurology.

[103]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[104]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[105]  Lynne Kiorpes,et al.  Development of contour integration in macaque monkeys , 2003, Visual Neuroscience.

[106]  M. Bickford,et al.  Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus , 2003, The Journal of comparative neurology.

[107]  R. Guillery Branching thalamic afferents link action and perception. , 2003, Journal of neurophysiology.

[108]  G. Schneider,et al.  Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth , 2004, Experimental Brain Research.

[109]  C. Casanova Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat's lateralis posterior-pulvinar complex: comparison with cortico-tectal cells , 2004, Experimental Brain Research.

[110]  N. Tsukahara,et al.  Electrical activity of red nucleus neurones investigated with intracellular microelectrodes , 2004, Experimental Brain Research.

[111]  B. J. M. Hess,et al.  Effects of kainic acid lesions of the nucleus reticularis tegmenti pontis on fast and slow phases of vestibulo-ocular and optokinetic reflexes in the pigmented rat , 2004, Experimental Brain Research.

[112]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[113]  W. C. Hall,et al.  Organization of the intermediate gray layer of the superior colliculus. I. Intrinsic vertical connections. , 2004, Journal of neurophysiology.

[114]  H. Kuypers,et al.  Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord , 1982, Experimental Brain Research.

[115]  G. J. Royce Cortical neurons with collateral projections to both the caudate nucleus and the centromedian-parafascicular thalamic complex: A fluorescent retrograde double labeling study in the cat , 2004, Experimental Brain Research.

[116]  S. Feig Corticothalamic cells in layers 5 and 6 of primary and secondary sensory cortex express GAP‐43 mRNA in the adult rat , 2004, The Journal of comparative neurology.

[117]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.