Threshold values of random K‐SAT from the cavity method

Using the cavity equations of \cite{mezard:parisi:zecchina:02,mezard:zecchina:02}, we derive the various threshold values for the number of clauses per variable of the random $K$-satisfiability problem, generalizing the previous results to $K \ge 4$. We also give an analytic solution of the equations, and some closed expressions for these thresholds, in an expansion around large $K$. The stability of the solution is also computed. For any $K$, the satisfiability threshold is found to be in the stable region of the solution, which adds further credit to the conjecture that this computation gives the exact satisfiability threshold.

[1]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[2]  A. Montanari,et al.  On the nature of the low-temperature phase in discontinuous mean-field spin glasses , 2003, cond-mat/0301591.

[3]  M. Mézard,et al.  Glass models on Bethe lattices , 2003, cond-mat/0307569.

[4]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[5]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[6]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[7]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[8]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[11]  Monasson,et al.  Entropy of the K-satisfiability problem. , 1996, Physical review letters.

[12]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[13]  L. Kirousis,et al.  Approximating the unsatisfiability threshold of random formulas , 1998, Random Struct. Algorithms.

[14]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[15]  Andrea Montanari,et al.  Instability of one-step replica-symmetry-broken phase in satisfiability problems , 2003, ArXiv.

[16]  F. Guerra,et al.  The Thermodynamic Limit in Mean Field Spin Glass Models , 2002, cond-mat/0204280.

[17]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[18]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[19]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[20]  Oded Goldreich,et al.  On the theory of average case complexity , 1989, STOC '89.

[21]  Riccardo Zecchina,et al.  Simplest random K-satisfiability problem , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[23]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[24]  Yuri Gurevich,et al.  Average Case Completeness , 1991, J. Comput. Syst. Sci..

[25]  Editors , 1986, Brain Research Bulletin.

[26]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[27]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[28]  Yacine Boufkhad,et al.  A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.

[29]  M Müller,et al.  Phase diagram of random heteropolymers. , 2004, Physical review letters.

[30]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[31]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.