Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph

Behavior prediction of traffic actors is an essential component of any real-world self-driving system. Actors' long-term behaviors tend to be governed by their interactions with other actors or traffic elements (traffic lights, stop signs) in the scene. To capture this highly complex structure of interactions, we propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene. The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges. This explicit reasoning about discrete interaction types not only helps in predicting future motion, but also enhances the interpretability of the model, which is important for safety-critical applications such as autonomous driving. We predict actors' trajectories and interaction types using a graph neural network, which is trained in a semi-supervised manner. We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.

[1]  Philip H. S. Torr,et al.  DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Silvio Savarese,et al.  SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Henggang Cui,et al.  Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks , 2018, ArXiv.

[4]  Bin Yang,et al.  Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Martial Hebert,et al.  Activity Forecasting , 2012, ECCV.

[6]  Sergey Levine,et al.  PRECOG: PREdiction Conditioned on Goals in Visual Multi-Agent Settings , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Silvio Savarese,et al.  Social LSTM: Human Trajectory Prediction in Crowded Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Silvio Savarese,et al.  Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Renjie Liao,et al.  SpAGNN: Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Henggang Cui,et al.  Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving , 2018, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[11]  Brian C. Becker,et al.  MultiXNet: Multiclass Multistage Multimodal Motion Prediction , 2020, 2021 IEEE Intelligent Vehicles Symposium (IV).

[12]  A. Barth,et al.  Where will the oncoming vehicle be the next second? , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[13]  Dragomir Anguelov,et al.  VectorNet: Encoding HD Maps and Agent Dynamics From Vectorized Representation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Henggang Cui,et al.  Short-term Motion Prediction of Traffic Actors for Autonomous Driving using Deep Convolutional Networks , 2018 .

[15]  Ying Nian Wu,et al.  Multi-Agent Tensor Fusion for Contextual Trajectory Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Sergio Casas,et al.  IntentNet: Learning to Predict Intention from Raw Sensor Data , 2018, CoRL.

[17]  K.C.J. Dietmayer,et al.  IMM object tracking for high dynamic driving maneuvers , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[18]  Elena Corina Grigore,et al.  CoverNet: Multimodal Behavior Prediction Using Trajectory Sets , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Mohan M. Trivedi,et al.  Convolutional Social Pooling for Vehicle Trajectory Prediction , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[21]  Paul Vernaza,et al.  r2p2: A ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Forecasting , 2018, ECCV.

[22]  Mayank Bansal,et al.  ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst , 2018, Robotics: Science and Systems.

[23]  Micol Marchetti-Bowick,et al.  Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural Networks , 2019, ArXiv.

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Henggang Cui,et al.  Predicting Motion of Vulnerable Road Users using High-Definition Maps and Efficient ConvNets , 2019, 2020 IEEE Intelligent Vehicles Symposium (IV).